精英家教网 > 高中数学 > 题目详情
12.已知命题p:?x∈(0,+∞),2x<x2,命题q:?x∈(0,+∞),x+$\frac{1}{x}$-2>0,则.(  )
A.p∨q为假B.p∧q为真C.p∧¬q为真D.p∧¬q为假

分析 举出正例x=3,可判断命题p的真假,举出反例x=1,可判断命题q的真假,进而根据复合命题真假判断的真值表,可得答案.

解答 解:当x=3时,2x<x2
故命题p:?x∈(0,+∞),2x<x2为真命题;
x=1时,x+$\frac{1}{x}$-2=0,
故命题q:?x∈(0,+∞),x+$\frac{1}{x}$-2>0为假命题,
故p∨q为真命题;
p∧q为假命题;
p∧¬q为真命题;
p∧¬q为真命题;
故选:C

点评 本题以命题的真假判断与应用为载体,考查了指数函数图象和性质,对勾函数的图象和性质,复合命题,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知等差数列{an}的前n项和为Sn,公差d=2,S10=120.
(1)求数列{an}的通项公式an
(2)若${b_n}={\sqrt{3}^{{a_n}-1}}$,求数列{bn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知实数x,y满足$\left\{\begin{array}{l}{x≥1}\\{x+y≤4}\\{ax+by+c≥0}\end{array}\right.$,且目标函数z=2x+y的最大值为7,最小值为1,则$\frac{4y-\frac{c}{a}}{x+\frac{c}{b}}$的取值范围是(  )
A.[-$\frac{1}{3}$,$\frac{10}{3}$]B.[-$\frac{1}{3}$,$\frac{8}{3}$]C.[-$\frac{2}{3}$,$\frac{14}{3}$]D.[-$\frac{2}{3}$,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图1,在直角梯形ABCD中,AD∥BC,∠BAD=90°,AB=BC=1,AD=2,E是AD的中点,O是AC与BE的交点.将△ABE沿BE折起到△A1BE的位置,如图2.
(1)证明:CD⊥平面A1OC;
(2)若平面A1BE⊥平面BCDE,求二面角B-A1C-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合A={x|y=log2(2-x)},B={x|x-a<0},若A∩B=A,则实数a的取值范围是(  )
A.(-∞,-2]B.[-2,+∞)C.(2,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.M是抛物线y2=4x上一点,F是焦点,且MF=4.过点M作准线l的垂线,垂足为K,则三角形MFK的面积为4$\sqrt{3}$.该抛物线的焦点与双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1的一个焦点相同,且双曲线的离心率为2,那么该双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1的渐近线方程为y=±$\sqrt{3}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)满足f(2x-3)=4x2+2x+1.
(1)求f(x)的解析式;
(2)设g(x)=f(x+a)-7x,a∈R,试求g(x)在[1,3]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.过点(-1,3)且平行于直线x-2y+3=0的直线方程为x-2y+m=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.半径为2cm的半圆纸片做成圆锥放在桌面上,它的最高处距离桌面$\sqrt{3}$cm.

查看答案和解析>>

同步练习册答案