分析 (1)利用等差数列的通项公式与求和公式即可得出.
(2)利用等比数列的通项公式与求和公式即可得出.
解答 解:(1)由等差数列{an}得:${S_{10}}=10{a_1}+\frac{10×9}{2}×2=120$,从而a1=3,
∴{an}的通项公式an=a1+(n-1)d=3+(n-1)×2=2n+1;
(2)${b_n}={\sqrt{3}^{{a_n}-1}}={3^n}$,而$\frac{{{b_{n+1}}}}{b_n}=\frac{{{3^{n+1}}}}{3^n}=3$,
∴数列{bn}是以b1=3为首项,q=3为公比的等比数列,
∴{bn}的前n项和为${T_n}=\frac{{{a_1}({1-{q^n}})}}{1-q}=\frac{{3×({1-{3^n}})}}{1-3}=\frac{3}{2}({{3^n}-1})$.
点评 本题考查了等差数列与等比数列的通项公式与求和公式,考查了分类讨论方法、推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | -15 | B. | $-\frac{1}{2}$ | C. | -11 | D. | $-\frac{31}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (5,-1) | B. | (1,-1) | C. | (-5,1) | D. | (5,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p∨q为假 | B. | p∧q为真 | C. | p∧¬q为真 | D. | p∧¬q为假 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com