精英家教网 > 高中数学 > 题目详情
14.二次函数f(x)=ax2+bx+c的图象与x轴有两个交点,它们之间的距离为6,二次函数图象的对称轴方程为x=2,且f(x)有最小值为-9,求a,b,c的值.

分析 根据已知构造关于a,b,c的方程组,解得答案.

解答 解:∵二次函数f(x)=ax2+bx+c图象的对称轴方程为x=2,且f(x)有最小值为-9,
且函数f(x)=ax2+bx+c的图象与x轴有两个交点,它们之间的距离为6,
∴$\left\{\begin{array}{l}a>0\\-\frac{b}{2a}=2\\ \frac{4ac-{b}^{2}}{4a}=-9\\ \frac{\sqrt{{b}^{2}-4ac}}{a}=6\end{array}\right.$,
解得:$\left\{\begin{array}{l}a=1\\ b=-4\\ c=-5\end{array}\right.$

点评 本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.设实数a,b满足0≤a,b≤8,且b2=16+a2,则b-a的最大值与最小值之和为12-4$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.今年我校高中部在全市初三学生中进行自主招生试点,通过面试招录35名优秀初三毕业生,第一轮面试共有从易到难的A、B、C、D四个问题,规则如下:
(1)每位参加者都必须按问题A、B、C、D顺序作答,直至答题结束;
(2)每位参加者计分器的初始分数都是100分,答对问题A加10分,答对问题B加20分,答对问题C加30分,答对问题D加60分,答错任意一题减20分;
(3)每回答一题,计分器显示累计分数,当累计分数小于80分时,答题结束,直接淘汰出局;
(4)当累计分数大于或等于140分时,答题结束,直接进入下一轮;
(5)当答完四题,累计分数仍不足140分时,答题结束,淘汰出局.
现有某学生甲对问题A、B、C、D答对的概率分别为$\frac{3}{4}$、$\frac{1}{2}$、$\frac{1}{3}$、$\frac{1}{4}$,且各题回答正确与否相互之间没有影响.
(Ⅰ)求甲同学能进入下一轮的概率;
(Ⅱ)用ξ表示甲同学本轮答题结束时答题的个数,求ξ的分布列和数学期望(均值).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知等差数列{an}的前n项和为Sn,公差d=2,S10=120.
(1)求数列{an}的通项公式an
(2)若${b_n}={\sqrt{3}^{{a_n}-1}}$,求数列{bn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图1,已知四边形ABFD为直角梯形,$AB∥DF,∠ADF=\frac{π}{2},△ADE$为等边三角形,AD=DF=2AF=2,C为DF的质点,如图2,将平面AED、BCF分别沿AD、BC折起,使得平面AED⊥平面ABCD,平面BCF⊥平面ABCD,连接EF、DF,设G为AE上任意一点.
(1)证明:DG∥平面BCF;
(2)求折起后的各平面围成的几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,从A地到B地设置了4条不同的网络线路,它们通过的最大信息量分别为1,2,3,4,现从中任取三条网线连通A,B两地(三条网线可通过的信息总量即三条网线各自的最大信息量之和).
(1)设三条网线可通过的最大信息总量为x,已知当x≥7时,可保证线路信息畅通,求线路信息畅通的概率.
(2)为保证网络在x≥7时信息畅通的概率超过0.85,需要增加一条最大信息量为n(n≥3,n∈N)的网线与原有4条线路并联,问满足条件的n的最小值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.直线y=x+m与椭圆$\frac{{x}^{2}}{144}$+$\frac{{y}^{2}}{25}$=1有两个公共点,则m的取值范围是(  )
A.(-5,5)B.(-12,12)C.(-13,13)D.(-15,15)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知实数x,y满足$\left\{\begin{array}{l}{x≥1}\\{x+y≤4}\\{ax+by+c≥0}\end{array}\right.$,且目标函数z=2x+y的最大值为7,最小值为1,则$\frac{4y-\frac{c}{a}}{x+\frac{c}{b}}$的取值范围是(  )
A.[-$\frac{1}{3}$,$\frac{10}{3}$]B.[-$\frac{1}{3}$,$\frac{8}{3}$]C.[-$\frac{2}{3}$,$\frac{14}{3}$]D.[-$\frac{2}{3}$,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)满足f(2x-3)=4x2+2x+1.
(1)求f(x)的解析式;
(2)设g(x)=f(x+a)-7x,a∈R,试求g(x)在[1,3]上的最小值.

查看答案和解析>>

同步练习册答案