分析 利用递推关系、等差数列的通项公式及其前n项和公式即可得出.
解答 解:当n=1时,2S1=a1a2,即2a1=a1a2,∴a2=2.
当n≥2时,2Sn=anan+1,2Sn-1=an-1an,两式相减得2an=an(an+1-an-1),
∵an≠0,∴an+1-an-1=2,
∴{a2k-1},{a2k}都是公差为2的等差数列,又a1=1,a2=2,
∴{an}是公差为1的等差数列,
∴an=1+(n-1)×1=n,
∵b1=16,bn+1-bn=2n,∴bn =( bn -bn-1)+( bn-1 -bn-2)+ ( bn-2 -bn-3)+…+( b2 -b1)+b1=n(n-1)+16
$\frac{bn}{an}$=n+$\frac{16}{n}$-1,利用基本不等式得n=4时n+$\frac{16}{n}$-1最小,∴数列$\{\frac{b_n}{a_n}\}$中第 4项最小.
点评 求an通项公式时要比较奇数项和偶数项通项特征,求an通项公式时用累加法,最后用基本不等式求最值.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $?{x_0}∈R,{2^{{x_0}-1}}≥1$ | B. | $?{x_0}∈R,{2^{{x_0}-1}}>1$ | ||
| C. | ?x∈R,2x-1≤1 | D. | ?x∈R,2x-1>1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com