精英家教网 > 高中数学 > 题目详情
1.过点(-1,3)且平行于直线x-2y+3=0的直线方程为x-2y+m=0.

分析 设要求的直线方程为:x-2y+m=0,把点(-1,3)代入上述方程,解得m即可得出.

解答 解:设要求的直线方程为:x-2y+m=0,
把点(-1,3)代入上述方程可得:-1-2×3+m=0,解得m=7.
∴要求的直线方程为:x-2y+7=0,
故答案为:x-2y+7=0.

点评 本题考查了相互平行的直线斜率之间的关系,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知向量$\overrightarrow a=(2,5),\overrightarrow b=(-3,6)$,则$\overrightarrow a-\overrightarrow b$=(  )
A.(5,-1)B.(1,-1)C.(-5,1)D.(5,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知命题p:?x∈(0,+∞),2x<x2,命题q:?x∈(0,+∞),x+$\frac{1}{x}$-2>0,则.(  )
A.p∨q为假B.p∧q为真C.p∧¬q为真D.p∧¬q为假

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.金老师为投资理财,考虑了两种投资计划,
计划A:从2015年初开始购买投资产品,每个月1号投资,第一次投次1500元钱,用于购买“余额宝”,“余额宝”的月收益率为0.5%(类似于银行存款,月底结算利息);
计划B:从2015年初开始购买投资产品,每个月1号投资,第一次投次1000元钱,以后每一次比上一次多投资200元,用于购买同一只股票,到2016年底(2016年12月31日),这只股票收益50%的概率为$\frac{1}{4}$,亏损$\frac{1}{12}$的概率为$\frac{3}{4}$.若两计划的收益均不考虑手续费.
(1)求计划B到2016年底的收益的期望值;
(2)根据2016年年底的收益,从收益率的角度出发,试问你将选择何种投资?
(注:收益率=$\frac{收益}{投资总额}$,参考数据1.00524≈1.13,$\frac{7}{80}$≈0.0875,$\frac{11}{176}$≈0.0625)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设函数y=sin(ωx+φ)(ω>0,φ∈(-$\frac{π}{2}$,$\frac{π}{2}$))的最小正周期为π,且其图象关于直线x=$\frac{π}{12}$对称,则在下面结论中:
①图象关于点($\frac{π}{6}$,0)对称; 
②图象关于点($\frac{π}{3}$,0)对称;
 ③在[0,$\frac{π}{6}$]上是增函数;
④在[-$\frac{π}{3}$,$\frac{π}{12}$]上是增函数;
⑤由f(x1)=f(x2)=0可得x1-x2必是π的整数倍.
正确结论的编号为②④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.点P(cos2015°,sin2015°)落在第(  )象限.
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.点P是△ABC所在平面内任一点,$\overrightarrow{PG}$=$\frac{1}{3}$($\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$),则点G的轨迹一定通过△ABC的(  )
A.重心B.内心C.垂心D.外心

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知α∈(0,$\frac{π}{4}$),0<m<1,a=logm$\frac{1}{sinα}$,b=msinα,c=mcosα,则(  )
A.c>a>bB.b>a>cC.a>c>bD.b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图所示的阴影部分是由x轴,直线x=1及曲线y=ex-1围成,现向矩形区域OABC内随机投掷一点,则该点落在阴影部分的概率是(  )
A.$\frac{1}{e}$B.$\frac{1}{e-1}$C.$1-\frac{1}{e}$D.$\frac{e-2}{e-1}$

查看答案和解析>>

同步练习册答案