精英家教网 > 高中数学 > 题目详情
5.设数列{an}满足:a1=2,an+1=1-$\frac{1}{a_n}$,记数列{an}的前n项之积为Πn,则Π2014的值为-2.

分析 利用数列的递推关系可得周期性,即可得出.

解答 解:∵a1=2,an+1=1-$\frac{1}{a_n}$,∴a2=1-$\frac{1}{2}$=$\frac{1}{2}$,a3=-1,a4=2,…,
∴an+3=an
∴Π2014=$({a}_{1}{a}_{2}{a}_{3})^{371}$×a1=-2.
故答案为:-2.

点评 本题考查了数列递推关系、数列的周期性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知命题$p:?{x_0}∈R,{2^{{x_0}-1}}≤1$,则命题?p为(  )
A.$?{x_0}∈R,{2^{{x_0}-1}}≥1$B.$?{x_0}∈R,{2^{{x_0}-1}}>1$
C.?x∈R,2x-1≤1D.?x∈R,2x-1>1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.$|{\overrightarrow a}|=2,|{\overrightarrow b}|=3,\overrightarrow a与\overrightarrow b的夹角为{60}^0,则|{2\overrightarrow a+\overrightarrow b}$|=$\sqrt{37}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知sin($\frac{π}{2}$+α)=$\frac{3}{5}$,α∈(0,$\frac{π}{2}$),则sin(π+α)=-$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图1,在直角梯形ABCD中,AD∥BC,∠BAD=90°,AB=BC=1,AD=2,E是AD的中点,O是AC与BE的交点.将△ABE沿BE折起到△A1BE的位置,如图2.
(1)证明:CD⊥平面A1OC;
(2)若平面A1BE⊥平面BCDE,求二面角B-A1C-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若AB=2,AC=$\sqrt{2}$BC,则S△ABC的最大值为(  )
A.2$\sqrt{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{2}}{3}$D.3$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.M是抛物线y2=4x上一点,F是焦点,且MF=4.过点M作准线l的垂线,垂足为K,则三角形MFK的面积为4$\sqrt{3}$.该抛物线的焦点与双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1的一个焦点相同,且双曲线的离心率为2,那么该双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1的渐近线方程为y=±$\sqrt{3}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=ax+bx+c(a>0,a≠1,b,c∈R)
(1)若b=0,且满足f(2)=1,f(4)=73,求函数f(x)的解析式;
(2)当a=2时,若对任意x1,x2∈[-1,1],恒有|f(x1)-f(x2)|≤4,求非负实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图,在正方体ABCD-A1B1C1D1中,上底面中心为O,则异面直线AO与DC1所成角的余弦值为$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步练习册答案