| A. | -$\frac{1}{7}$ | B. | $\frac{1}{7}$ | C. | -7 | D. | 7 |
分析 根据三角函数的定义和二倍角公式求解.
解答 解:角α的终边上的一点的坐标为($\frac{3}{5},\frac{4}{5}$),
∴sinα=$\frac{y}{r}$=$\frac{4}{5}$,cosα=$\frac{x}{r}$=$\frac{3}{5}$.
那么:$\frac{cos2α}{1+sin2α}$=$\frac{1-2si{n}^{2}α}{1+2sinαcosα}$=$\frac{1-2×\frac{16}{25}}{1+2×\frac{4}{5}×\frac{3}{5}}$=$\frac{-\frac{7}{25}}{\frac{49}{25}}=-\frac{1}{7}$.
故选A.
点评 本题考查了三角函数的定义和二倍角公式以及计算能力,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{16}{3}$ | B. | $\frac{16}{3}$ | C. | -6 | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | $\frac{25}{2}$ | C. | 6 | D. | $\frac{27}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $2-\frac{3}{5}i$ | B. | $2+\frac{3}{5}i$ | C. | 2+i | D. | 2-i |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com