精英家教网 > 高中数学 > 题目详情
1.下面有五个命题:
①函数y=sin4x-cos4x的最小正周期是π;
②终边在y轴上的角的集合是$\{α|α=\frac{kπ}{2},k∈Z\}$;
③在同一坐标系中,函数y=sinx的图象和函数y=x的图象有三个公共点;
④把函数$y=3sin(2x+\frac{π}{3})$的图象向右平移$\frac{π}{6}$得到y=3sin2x的图象;
⑤角θ为第一象限角的充要条件是sinθ>0
其中,真命题的编号是①④.(写出所有真命题的编号)

分析 ①化简y=sin4x-cos4x=-cos2x可求其周期; 
②k为偶数时,终边在x轴上;
③在同一坐标系中,函数y=sinx的图象和函数y=x的图象仅有一个公共点 
④把函数$y=3sin(2x+\frac{π}{3})$的图象向右平移$\frac{π}{6}$得到y=3sin2x的图象;
⑤sinθ>0时,角θ可为轴线角(如900).

解答 解:对于①,∵y=sin4x-cos4x=sin2x-cos2x=-cos2x,∴最小正周期是π,故①正确;  
对于 ②,k为偶数时,终边在x轴上,故②错误;
对于③在同一坐标系中,函数y=sinx的图象和函数y=x的图象仅有一个公共点,故③错误;
 对于 ④把函数$y=3sin(2x+\frac{π}{3})$的图象向右平移$\frac{π}{6}$得到y=3sin2x的图象,故④正确;
对于⑤sinθ>0时,角θ可为轴线角(如900),故⑤错误,
故答案为:①④.

点评 本题考查了三角函数的定义、周期、图象平移、性质等基础知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.设数列{an}的前n项和为Sn,a1=1,Sn=nan-n(n-1).
(1)求证:数列{an}为等差数列,并分别求出an的表达式;
(2)设数列$\left\{{\frac{1}{{{a_n}{a_{n+1}}}}}\right\}$的前n项和为Pn,求证:Pn<$\frac{1}{2}$;
(3)设Cn=$\frac{{a}_{n}}{{2}^{n}}$,Tn=C1+C2+…+Cn,试比较Tn与$\frac{n}{{{2^{n-1}}}}$的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设等比数列{an}的各项均为正数,公比为q,前n项和为Sn,若对?n∈N*,有$\frac{{S}_{2n}}{{S}_{n}}$<5,则q的取值范围是(  )
A.(0,1]B.($\frac{1}{2}$,2)C.[1,$\sqrt{2}$)D.($\frac{\sqrt{2}}{2}$,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知定义在R上的奇函数f(x)满足f(x+3)=-f(x),若f(1)>3,$f(11)=\frac{2a-1}{3-a}$,则实数a的取值范围为(  )
A.3<a<8B.a<3或a>8C.2<a<3D.a<2或a>3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=lg($\sqrt{1+4{x}^{2}}$-2x)+$\frac{1}{2}$,则f(lg3)+f(lg$\frac{1}{3}$)=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知a>0,b>0,且a2+b2=18.
(1)若a+b≤m恒成立,求m的最小值;
(2)若2|x-1|+|x|≥a+b对任意的a,b恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在锐角△ABC中,角A,B所对的边长分别为a,b,且$2asinB=\sqrt{3}b$.
(Ⅰ)求角A的大小;
(Ⅱ)若a=3,求△ABC周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=lnx+1.
(1)①证明:当x>0时,f(x)≤x(当且仅当x=1时取得等号);
②当n≥2,n∈N*时,证明:$\sum_{k=1}^n{\frac{lnk}{k+1}}<\frac{n(n-1)}{4}$;
(2)设$g(x)=ax+(a-1)•\frac{1}{x}-lnx-1$,若g(x)≥0对x>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)=sin$({\frac{3}{2}x+\frac{π}{4}})$的图象相邻的两个零点之间的距离是(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{4π}{3}$D.

查看答案和解析>>

同步练习册答案