精英家教网 > 高中数学 > 题目详情
已知数列{an},{bn},且满足an+1-an=bn(n=1,2,3,…).
(1)若a1=0,bn=2n,求数列{an}的通项公式;
(2)若bn+1+bn-1=bn(n≥2),且b1=1,b2=2.记cn=a6n-1(n≥1),求证:数列{cn}为常数列;
(3)若bn+1bn-1=bn(n≥2),且a1=1,b1=1,b2=2.求数列{an}的前36项和S36
考点:数列的求和
专题:等差数列与等比数列
分析:(1)利用“累加求和”和等差数列的前n项和公式即可求出;
(2)通过已知条件先探究数列{bn}是一个以6为周期的循环数列,进而即可证明数列{cn}为常数列.
(3)由条件探索出:数列{a6n+i}均为以7为公差的等差数列,由此能求出数列{an}的前36项和S36
解答: 解:(1)当n≥2时,有
an=a1+(a2-a1)+(a3-a2)+…+(an-an-1
=a1+b1+b2+…+bn-1
=2×1+2×2+…+2×(n-1)
=2×
(n-1)n
2
=n2-n,又当n=1时此式也成立.
∴数列{an}的通项为an=n2-n.
(2)∵bn+1+bn-1=bn(n≥2),
∴对任意的n∈N*有bn+6=bn+5-bn+4=-bn+3=bn+1-bn+2=bn
∴数列{bn}是一个以6为周期的循环数列
又∵b1=1,b2=2,
∴b3=b2-b1=1,b4=b3-b2=-1,b5=b4-b3=-2,b6=b5-b4=-1.
∴cn+1-cn=a6n+5-a6n-1=a6n+5-a6n+4+a6n+4-a6n+3+…+a6n-a6n-1
=b6n+4+b6n+3+b6n+2+b6n+1+b6n+b6n-1=b4+b3+b2+b1+b6+b5
=-1+1+2+1-1+-2=0(n≥1),
所以数列{cn}为常数列.
(3)∵bn+1bn-1=bn(n≥2),且b1=1,b2=2,
∴b3=2,b4=1,b5=
1
2
,b6=
1
2

且对任意的n∈N*,有bn+6=
bn+5
bn+4
=
1
bn+3
=
bn+1
bn+2
=bn
设cn=a6n+i(n≥0),(其中i为常数且i∈{1,2,3,4,5,6},
∴cn+1-cn=a6n+6+i-a6n+i=b6n+i+b6n+i+1+b6n+i+2+b6n+i+3+b6n+i+4+b6n+i+5
=b1+b2+b3+b4+b5+b6
=1+2+2+1+
1
2
+
1
2
=7(n≥0).
所以数列{a6n+i}均为以7为公差的等差数列.
∵a1=1,a2=2,a3=4,a4=6,a5=7,a6=
15
2

∴数列{an}的前36项和
S36=6(a1+a2+a3+a4+a5+a6)+6(7+14+21+28+35)
=165+630=795.
点评:熟练掌握等差数列的前n项和公式、“累加求和”、探究数列{bn}是一个以6为周期的循环数列,本题较好的考查了学生的探究能力和计算能力,本题有一点的难度.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若正数a,b满足
1
a
+
1
b
=1,则
4
a-1
+
16
b-1
的最小值为(  )
A、16B、25C、36D、49

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,平行四边形ABCD的对角线AC∩BD=0,且AB=BC=BD=6,BM=MC,将四边形ABCD沿对角线AC折起,得到三棱锥B-ACD,且DM=3
2

(Ⅰ)求证:平面ABC⊥平面MDO;
(Ⅱ)求三棱锥M-ABD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

若以O为极点,x轴正半轴为极轴,曲线C1的极坐标方程为:ρ2-4ρcosθ-4ρsinθ+6=0,曲线C2的参数方程为:
x=-2-
2
t
y=3+
2
t
(t为参数),则曲线C1上的点到曲线C2上的点距离的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

作图:
①作出y=|x-3|-|x+1|的函数图象;
②作出y=
(x-1)2
+
|x|
x
的函数图象;
③作出y=|-x2+4x+5|的函数图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=丨x+2丨+丨x-3丨的最值,并画图.

查看答案和解析>>

科目:高中数学 来源: 题型:

复平面内关于原点对称的两点对应的复数为z1,z2,且满足3z1+(z2-2)i=2z2-(1+z1)i,求z1,z2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

给定两个命题,P:|-a+2|<2;Q:关于x的方程x2-x+a=0有实数根.如果P∨Q为真命题,P∧Q为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

“∵y=x3是奇函数∴y=x3的图象关于原点对称.”以上推理的大前提是
 

查看答案和解析>>

同步练习册答案