精英家教网 > 高中数学 > 题目详情
若函数f(x)=(a2+4a-5)x2-4(a-1)x+3的图象恒在x轴上方,则a的取值范围是(  )
A.[1,+∞)B.(1,19)C.[1,19)D.(-1,19]
f(x)=(a2+4a-5)x2-4(a-1)x+3的图象恒在x轴上方,即(a2+4a-5)x2-4(a-1)x+3>0(*)恒成立,
(1)当a2+4a-5=0时,可得a=-5或a=1,
若a=-5,(*)式可化为24x+3>0,不恒成立;
若a=1,(*)式可化为3>0,恒成立;
(2)当a2+4a-5≠0时,可得a≠-5且a≠1,
由题意可得,
a2+4a-5>0
△=[-4(a-1)]2-4(a2+4a-5)×3<0
,即
a2+4a-5>0
a2-20a+19<0
,解得1<a<19;
综上所述,a的取值范围是:[1,19),
故选C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

二次函数的图象经过三点
(1)求函数的解析式;(2)求函数在区间上的最大值和最小值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知二次函数f(x)=ax2+2x+c(a≠0)的图象与y轴交于点(0,1),且满足f(-2+x)=f(-2-x)(x∈R)
(Ⅰ)求该二次函数的解析式及函数的零点.
(Ⅱ)已知函数在(t-1,+∞)上为增函数,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax2+bx+c,其中a∈N*,b∈N,c∈Z。
(1)若b>2a,且f(sinx)(x∈R)的最大值为2,最小值为-4,试求函数f(x)的最小值;
(2)若对任意实数x,不等式4x≤f(x)≤2(x2+1)恒成立,且存在x0,使得f(x0)<2(x02+1)成立,求c的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知二次函数f(x)=x2+(b-
2-a2
)x+(a+b)2的图象关于y轴对称,则此函数的图象与y轴交点的纵坐标的最大值为(  )
A.1B.
2
C.2D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知a,b,c是实数,函数f(x)=ax2+bx+c,g(x)=ax+b,当-1≤x≤1时|f(x)|≤1.
(1)证明:|c|≤1;
(2)证明:当-1≤x≤1时,|g(x)|≤2;
(3)设a>0,有-1≤x≤1时,g(x)的最大值为2,求f(x).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若关于x的不等式x2-4x-2-a>0在区间(1,4)内有解,则实数a的取值范围是(  )
A.a<-2B.a>-2C.a>-6D.a<-6

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

当x∈(3,4)时,不等式x2+mx+4<0恒成立,则m的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

二次函数的图象经过三点,则这个二次函数的
 
解析式为                       .

查看答案和解析>>

同步练习册答案