精英家教网 > 高中数学 > 题目详情

【题目】如图,ABPAPBC分别为⊙O的切线和割线切点ABD的中点,ACBD相交于点EABPE相交于点F直线CF交⊙O于另一点GPA于点K.

证明:(1)KPA的中点;(2)..

【答案】(1)见解析(2)见解析

【解析】

(1)APC中,由塞瓦定理,知.……

ABD的中点PA是⊙O的切线

∴∠PAB=ADB=ABD.

EBAP. ………………………………………

由①②,得AK=KP.KPA的中点.

另解:∴ABD的中点PA是⊙O的切线

∴∠PAB=ADB=ABDEBAP.

如图,过点FMNAPAE于点M,交PB于点N.

.…………

EBAPMN.…………

∴由①②,得.

FM=FN.

又由MNAP

AK=KPKPA的中点.

(2)(1)及切线长定理,得.因此,.

又∠PKG=CKP

PKG∽△CKP.

APG=KPG=KCP=GCB=BAG.

又∠PAG=ABG

GPA∽△GAB.

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知△ABC为锐角三角形,命题p:不等式logcosC >0恒成立,命题q:不等式logcosC >0恒成立,则复合命题p∨q、p∧q、¬p中,真命题的个数为(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定长为2的线段AB的两个端点在以点0 为焦点的抛物线x2=2py上移动,记线段AB的中点为M,求点Mx轴的最短距离,并求此时点M的坐标

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的单调递减的奇函数,当时,.

(1)求的值;

(2)求的解析式;

(3)若对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】常州地铁项目正在紧张建设中,通车后将给市民出行带来便利.已知某条线路通车后,地铁的发车时间间隔 (单位:分钟)满足经测算,地铁载客量与发车时间间隔相关,当时地铁为满载状态,载客量为1200人,当时,载客量会减少,减少的人数与的平方成正比,且发车时间间隔为2分钟时的载客量为560人,记地铁载客量为.

⑴ 求的表达式,并求当发车时间间隔为6分钟时,地铁的载客量;

⑵ 若该线路每分钟的净收益为(元),问当发车时间间隔为多少时,该线路每分钟的净收益最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+2x+alnx在区间(0,1)内无极值点,则a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若是两个相交平面,则在下列命题中,真命题的序号为 .(写出所有真命题的序号)

若直线,则在平面内,一定不存在与直线平行的直线.

若直线,则在平面内,一定存在无数条直线与直线垂直.

若直线,则在平面内,不一定存在与直线垂直的直线.

若直线,则在平面内,一定存在与直线垂直的直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}按三角形进行排列,如图,第一层一个数a1 , 第二层两个数a2和a3 , 第三层三个数a4 , a5和a6 , 以此类推,且每个数字等于下一层的左右两个数字之和,如a1=a2+a3 , a2=a4+a5 , a3=a5+a6 , ….

(1)若第四层四个数为0或1,a1为奇数,则第四层四个数共有多少种不同取法?
(2)若第十一层十一个数为0或1,a1为5的倍数,则第十一层十一个数共有多少种不同取法?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线方程为x2=2py(p>0),其焦点为F,点O为坐标原点,过焦点F作斜率为k(k≠0)的直线与抛物线交于A,B两点,过A,B两点分别作抛物线的两条切线,设两条切线交于点M.
(1)求
(2)设直线MF与抛物线交于C,D两点,且四边形ACBD的面积为 ,求直线AB的斜率k.

查看答案和解析>>

同步练习册答案