精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x|x-a|-lnx,a∈R.
(Ⅰ)若a=2,求函数f(x)在区间[1,e]上的最值;
(Ⅱ)若f(x)≥0恒成立,求a的取值范围.(注:e是自然对数的底数,约等于2.71828)
(Ⅰ) 若a=2,则f(x)=x|x-2|-lnx.
当x∈[2,e]时,f(x)=x2-2x-lnx,f′(x)=2x-2-
1
x
=
2x2-2x-1
x
>0

所以函数f(x)在[2,e]上单调递增;
当x∈[1,2]时,f(x)=-x2+2x-lnx,f′(x)=-2x+2-
1
x
=
-2x2+2x-1
x
<0

所以函数f(x)在区间[1,2]上单调递减,
所以f(x)在区间[1,2]上有最小值f(2)=-ln2,
又因为f(1)=1,f(e)=e(e-2)-1,而e(e-2)-1<1,
所以f(x)在区间[1,e]上有最大值f(1)=1.
(Ⅱ) 函数f(x)的定义域为(0,+∞).
由f(x)≥0,得|x-a|≥
lnx
x
.   (*)
(ⅰ)当x∈(0,1)时,|x-a|≥0,
lnx
x
<0

不等式(*)恒成立,所以a∈R;
(ⅱ)当x≥1时,
①当a≤1时,由|x-a|≥
lnx
x
x-a≥
lnx
x
,即a≤x-
lnx
x

现令h(x)=x-
lnx
x
,则h′(x)=
x2-1+lnx
x2

因为x≥1,所以h'(x)≥0,故h(x)在[1,+∞)上单调递增,
从而h(x)的最小值为1,因为a≤x-
lnx
x
恒成立等价于a≤h(x)min
所以a≤1;
②当a>1时,|x-a|的最小值为0,而
lnx
x
>0(x>1)
,显然不满足题意.
综上可得,满足条件的a的取值范围是(-∞,1].
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案