分析 先求导,由题意f(x)在(-1,0)内单调递增,转化为(-1,0)是函数单调递增区间的子集,在此区间导数f′(x)≥0恒成立,解得即可.
解答 解:f(x)=-x3+2(1-a)x2+3ax,
∴f′(x)=-3x2+4(1-a)x+3a,
∵f(x)在(-1,0)内单调递增,
∴(-1,0)是函数单调递增区间的子集,在此区间导数f′(x)≥0恒成立,
∴$\left\{\begin{array}{l}{f′(-1)≥0}\\{f′(0)≥0}\end{array}\right.$即$\left\{\begin{array}{l}{3a≥0}\\{-3-4(1-a)+3a≥0}\end{array}\right.$,
解得a≥1,
故答案为:[1,+∞)
点评 本题考查函数的单调性以及怎样解决子区间的问题,应用数形结合的方法解决.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com