精英家教网 > 高中数学 > 题目详情

已知奇函数时的图象是如图所示的抛物线的一部分.

(1)请补全函数的图象;
(2)写出函数的表达式;
(3)写出函数的单调区间.

(1)略
(2)
(3)增区间:,减区间

解析试题分析:(1)

(2)
(3)增区间:,减区间
考点:二次函数的图象和性质,函数的奇偶性。
点评:中档题,由函数图象确定函数的解析式,是一类常见题目,解题过程中,要注意观察图象的对称性、过特殊点等特征。本题主要利用函数图象的对称性,明确求偶函数的解析式,进一步写出单调区间。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)求函数的周期和递增区间;
(Ⅱ)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)求函数上的最小值
(2)对一切的恒成立,求实数a的取值范围
(3)证明对一切,都有成立

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数=,其中a≠0.
(1)若对一切x∈R,≥1恒成立,求a的取值集合.
(2)在函数的图像上取定两点,记直线AB的斜率为K,问:是否存在x0∈(x1,x2),使成立?若存在,求的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若函数满足,且在定义域内恒成立,求实数的取值范围;
(2)若函数在定义域上是单调函数,求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求函数的定义域

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对于函数 
(1)探索函数的单调性;
(2)是否存在实数,使函数为奇函数?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数的定义域为集合A,函数的值域为集合B
(Ⅰ)求集合AB
(Ⅱ)若集合AB满足,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知.
(1)求极值;
(2)

查看答案和解析>>

同步练习册答案