精英家教网 > 高中数学 > 题目详情

已知.
(1)求极值;
(2)

(1)极大值为极小值为(2)

解析试题分析:(1),     2分
由单调性即得极大值为
极小值为             6分
(2),即
          12分
考点:函数极值最值
点评:求函数的最值极值一般首先通过导数求得极值点,第二问中的不等式恒成立转化为求的最值并比较大小

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知奇函数时的图象是如图所示的抛物线的一部分.

(1)请补全函数的图象;
(2)写出函数的表达式;
(3)写出函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 
(I) 解关于的不等式
(II)若函数的图象恒在函数的上方,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
求(1) 的定义域;
(2)判断在其定义域上的奇偶性,并予以证明,
(3)求的解集。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

时,幂函数为减函数,求实数的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知.
(1)若,解不等式
(2)若不等式对一切实数恒成立,求实数的取值范围;
(3)若,解不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的单调区间;
(2)若关于的方程有3个不同实根,求实数的取值范围;
(3)已知当恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=lnx-ax+-1.
(1) 当a=1时, 过原点的直线与函数f(x)的图象相切于点P, 求点P的坐标;
(2) 当0<a<时, 求函数f(x)的单调区间;
(3) 当a=时, 设函数g(x)=x2-2bx-, 若对于x1, [0, 1]使f(x1)≥g(x2)成立, 求实数b的取值范围.(e是自然对数的底, e<+1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)求f(x)的单调区间;
(2)若当x∈[-2,2]时,不等式f(x)>m恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案