精英家教网 > 高中数学 > 题目详情

设函数.
(1)求f(x)的单调区间;
(2)若当x∈[-2,2]时,不等式f(x)>m恒成立,求实数m的取值范围.

(1)的增区间,的减区间.
(2)m<0 。

解析试题分析:(1)  2分
的增区间,
的减区间.   6分
(2)x∈[-2,2]时,不等式f(x)>m恒成立
等价于>m,        8分
令:
∴x=0和x=-2,由(1)知x=-2是极大值点,x=0为极小值点

∴m<0    12分
考点:本题主要考查应用导数研究函数的单调性及极值,简单不等式解法。
点评:典型题,本题属于导数应用中的基本问题,(2)作为 “恒成立问题”,转化成求函数最值问题。是解答成立问题的常用解法。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知.
(1)求极值;
(2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(Ⅰ) 当时,求函数的极值;
(Ⅱ)当时,讨论函数的单调性.
(Ⅲ)若对任意及任意,恒有 成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义域为的函数是奇函数.
(1)求的值;
(2)利用定义判断函数的单调性;
(3)若对任意,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)当时,求的值域
(2)解关于的不等式:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
①当时,求函数在上的最大值和最小值;
②讨论函数的单调性;
③若函数处取得极值,不等式恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=x+ax2+blnx,曲线y=f(x)过P(1,0),且在P点处的切线斜率为2.
(1)求a,b的值;
(2)证明:f(x)≤2x-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若处取得极值,求的值;
(2)求的单调区间;
(3)若,函数,若对于,总存在使得,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图象过点P(0,2),且在点M(-1,f(-1))处的切线方程为.
(Ⅰ)求函数的解析式;
(Ⅱ)求函数的单调区间.

查看答案和解析>>

同步练习册答案