精英家教网 > 高中数学 > 题目详情

设函数
(Ⅰ) 当时,求函数的极值;
(Ⅱ)当时,讨论函数的单调性.
(Ⅲ)若对任意及任意,恒有 成立,求实数的取值范围.

(Ⅰ) 无极大值.
(Ⅱ)当时,上是减函数;
时,单调递减,在上单调递增;
时,单调递减,在上单调递增;
(Ⅲ) 

解析试题分析:(Ⅰ)函数的定义域为.  
时,2分
时,时, 无极大值. 4分
(Ⅱ) 
5分
,即时, 在定义域上是减函数;
,即时,令
,即时,令
      综上,当时,上是减函数;
时,单调递减,在上单调递增;
时,单调递减,在上单调递增;8分
(Ⅲ)由(Ⅱ)知,当时,上单减,是最大值, 是最小值.
  10分

经整理得,由,所以12分
考点:本题主要考查应用导数研究函数的单调性、最值及不等式恒成立问题,不等式的解法。
点评:典型题,本题属于导数应用中的基本问题,通过研究函数的单调性,明确了极值情况。涉及不等式恒成立问题,转化成了研究函数的最值之间的差,从而利用“分离参数法”又转化成函数的最值问题。涉及对数函数,要特别注意函数的定义域。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数 
(I) 解关于的不等式
(II)若函数的图象恒在函数的上方,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的单调区间;
(2)若关于的方程有3个不同实根,求实数的取值范围;
(3)已知当恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=lnx-ax+-1.
(1) 当a=1时, 过原点的直线与函数f(x)的图象相切于点P, 求点P的坐标;
(2) 当0<a<时, 求函数f(x)的单调区间;
(3) 当a=时, 设函数g(x)=x2-2bx-, 若对于x1, [0, 1]使f(x1)≥g(x2)成立, 求实数b的取值范围.(e是自然对数的底, e<+1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的一个极值点.
(1)求的单调递增区间;
(2)若当时,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)求f(x)的单调区间;
(2)若当x∈[-2,2]时,不等式f(x)>m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)是定义在R上的奇函数,并且当x∈(0,+∞)时,f(x)=2x.
(1)求f(log2)的值;
(2)求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)求f(x)的单调区间;
(2)若当x∈[-2,2]时,不等式f(x)>m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若对任意的实数a,函数的图象在x = x0处的切线斜率总想等,求x0的值;
(2)若a > 0,对任意x > 0不等式恒成立,求实数a的取值范围。

查看答案和解析>>

同步练习册答案