精英家教网 > 高中数学 > 题目详情

设函数
(1)求f(x)的单调区间;
(2)若当x∈[-2,2]时,不等式f(x)>m恒成立,求实数m的取值范围.

(1)为增区间,为减区间
(2) m<0

解析试题分析:解:(1) -             2分
的增区间,
的减区间.       6分
(2)x∈[-2,2]时,不等式f(x)>m恒成立
等价于>m,                                 8分
令:
∴x=0和x=-2,由(1)知x=-2是极大值点,x=0为极小值点
,
∴m<0                       12分
考点:导数的运用
点评:解决的关键是根据导数的符号判定函数的单调性,以及函数的极值,来得到求解,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,
(1) 当时,求曲线处的切线方程;
(2)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若曲线与曲线在它们的交点(1,c)处具有公共切线,求,的值;
(2)当时,若函数在区间[,2]上的最大值为28,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)解关于的不等式
(2)若的解集非空,求实数m的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(Ⅰ) 当时,求函数的极值;
(Ⅱ)当时,讨论函数的单调性.
(Ⅲ)若对任意及任意,恒有 成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若,求曲线在点处的切线方程;
(Ⅱ)求函数的单调区间;
(Ⅲ)设函数.若至少存在一个,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义域为的函数是奇函数.
(1)求的值;
(2)利用定义判断函数的单调性;
(3)若对任意,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
①当时,求函数在上的最大值和最小值;
②讨论函数的单调性;
③若函数处取得极值,不等式恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若存在实常数,使得函数对其定义域上的任意实数分别满足:,则称直线的“隔离直线”.已知为自然对数的底数).
(1)求的极值;
(2)函数是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案