精英家教网 > 高中数学 > 题目详情

已知函数
(1)解关于的不等式
(2)若的解集非空,求实数m的取值范围

(1)(3)

解析试题分析:解:(1)由题意原不等式可化为:
即: 由
    综上原不等式的解为
(2)原不等式等价于
,即
,所以
所以.
考点:绝对值不等式的运用
点评:主要是考查了根据绝对值不等式的性质来得到求解最值得到参数范围是解题的关键,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数)的图象如图.根据图象写出:

(1)函数的最大值;
(2)使值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知.
(1)若,解不等式
(2)若不等式对一切实数恒成立,求实数的取值范围;
(3)若,解不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数
(Ⅰ)判断并证明函数的奇偶性;
(Ⅱ)若,证明函数上单调递增;
(Ⅲ)在满足(Ⅱ)的条件下,解不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=lnx-ax+-1.
(1) 当a=1时, 过原点的直线与函数f(x)的图象相切于点P, 求点P的坐标;
(2) 当0<a<时, 求函数f(x)的单调区间;
(3) 当a=时, 设函数g(x)=x2-2bx-, 若对于x1, [0, 1]使f(x1)≥g(x2)成立, 求实数b的取值范围.(e是自然对数的底, e<+1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知a为实数,函数f(x)=(x2+1)(xa),若f′(-1)=0,求函数yf(x)在上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)求f(x)的单调区间;
(2)若当x∈[-2,2]时,不等式f(x)>m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

判断下列函数的奇偶性
(1)                  (2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是函数在点附近的某个局部范围内的最大(小)值,则称是函数的一个极值,为极值点.已知,函数
(Ⅰ)若,求函数的极值点;
(Ⅱ)若不等式恒成立,求的取值范围.
为自然对数的底数)

查看答案和解析>>

同步练习册答案