若存在实常数和,使得函数和对其定义域上的任意实数分别满足:和,则称直线为和的“隔离直线”.已知,为自然对数的底数).
(1)求的极值;
(2)函数和是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.
(1)当时,取极小值,其极小值为(2)函数和存在唯一的隔离直线
解析试题分析:(1) ,
.
当时,.
当时,,此时函数递减;
当时,,此时函数递增;
∴当时,取极小值,其极小值为. …………………………………6分
(2)解法一:由(1)可知函数和的图象在处有公共点,因此若存在和的隔离直线,则该直线过这个公共点.
设隔离直线的斜率为,则直线方程为,即.
由,可得当时恒成立.
,
由,得.
下面证明当时恒成立.
令,则
,
当时,.
当时,,此时函数递增;
当时,,此时函数递减;
∴当时,取极大值,其极大值为.
从而,即恒成立.
∴函数和存在唯一的隔离直线.……………12分
解法二: 由(1)可知当时, (当且仅当时取等号) .
若存在和的隔离直线,则存在实常数和
科目:高中数学 来源: 题型:解答题
若是函数在点附近的某个局部范围内的最大(小)值,则称是函数的一个极值,为极值点.已知,函数.
(Ⅰ)若,求函数的极值点;
(Ⅱ)若不等式恒成立,求的取值范围.
(为自然对数的底数)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数,。
(1)若对任意的实数a,函数与的图象在x = x0处的切线斜率总想等,求x0的值;
(2)若a > 0,对任意x > 0不等式恒成立,求实数a的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数,(其中实数,是自然对数的底数).
(Ⅰ)当时,求函数在点处的切线方程;
(Ⅱ)求在区间上的最小值;
(Ⅲ) 若存在,使方程成立,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com