精英家教网 > 高中数学 > 题目详情

已知函数
(1)求函数的单调区间;
(2)若的图象恰有两个交点,求实数的取值范围。

(1),在
(2)

解析试题分析:解:(1)       1
                   2   







0



 


       6   
(2)由(1)得       7


          9
                10


          13
考点:函数与方程,函数的单调性
点评:解决的关键是的对于导数的符号与函数单调性关系,以及图像的交点问题转化为方程根的问题来处理属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知定义域为的函数是奇函数.
(1)求的值;
(2)利用定义判断函数的单调性;
(3)若对任意,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若处取得极值,求的值;
(2)求的单调区间;
(3)若,函数,若对于,总存在使得,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若存在实常数,使得函数对其定义域上的任意实数分别满足:,则称直线的“隔离直线”.已知为自然对数的底数).
(1)求的极值;
(2)函数是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若,函数是R上的奇函数,当,(i)求实数
的值;(ii)当时,求的解析式;
(2)若方程的两根中,一根属于区间,另一根属于区间,求实数的取 值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是R上的奇函数,且当时,,求的解析式。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图象过点P(0,2),且在点M(-1,f(-1))处的切线方程为.
(Ⅰ)求函数的解析式;
(Ⅱ)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,在时取得极值.
(Ⅰ)求函数的解析式;
(Ⅱ)若时,恒成立,求实数m的取值范围;
(Ⅲ)若,是否存在实数b,使得方程在区间上恰有两个相异实数根,若存在,求出b的范围,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)求函数的单调递增区间;
(Ⅱ)求函数上的最大值和最小值.

查看答案和解析>>

同步练习册答案