精英家教网 > 高中数学 > 题目详情

已知函数.
(1)若,函数是R上的奇函数,当,(i)求实数
的值;(ii)当时,求的解析式;
(2)若方程的两根中,一根属于区间,另一根属于区间,求实数的取 值范围.

(1)g(0)=0,(k=6)(2)

解析试题分析:解:(1).由f(1)=16得k=6,      1分
(i).由g(x)是R上的奇函数,∴g(0)=0,(k=6)        3分
(ii).依题意知:当x>0时,g(x)=;当x<0时,则(-x)>0,由
.
时,         6分
(2).依题意得:        9分
 ..12分;所以k的取值范围为 .13分
考点:函数与不等式
点评:主要是考查了二次方程中根的分布问题的运用,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数f(x)是定义在R上的奇函数,并且当x∈(0,+∞)时,f(x)=2x.
(1)求f(log2)的值;
(2)求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

理科已知函数,当时,函数取得极大值.
(Ⅰ)求实数的值;(Ⅱ)已知结论:若函数在区间内导数都存在,且,则存在,使得.试用这个结论证明:若,函数,则对任意,都有;(Ⅲ)已知正数满足求证:当时,对任意大于,且互不相等的实数,都有

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若对任意的实数a,函数的图象在x = x0处的切线斜率总想等,求x0的值;
(2)若a > 0,对任意x > 0不等式恒成立,求实数a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数).
(1)若函数处取得极大值,求的值;
(2)时,函数图象上的点都在所表示的区域内,求的取值范围;
(3)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的单调区间;
(2)若的图象恰有两个交点,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

动点P从边长为1的正方形ABCD的顶点A出发顺次经过B、C、D,再回到A,设表示P点行程,表PA的长,求关于的函数关系式。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的极值;
(2)若上恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数有三个极值点。
(I)证明:
(II)若存在实数c,使函数在区间上单调递减,求的取值范围。

查看答案和解析>>

同步练习册答案