精英家教网 > 高中数学 > 题目详情

已知函数
(1)求函数的极值;
(2)若上恒成立,求的取值范围.

(1)当时,有极大值,且极大值为
(2)

解析试题分析:(1).  
,得.  
时,单调递增;
时,单调递减.
故当时,有极大值,且极大值为
(2)在恒成立等价于恒成立,
等价于上的最大值小于

由(1)知,令,可知处取得最大值
所以,即的取值范围为.       12分
考点:导数的运用
点评:考查了导数在研究函数的单调性和极值方面的运用,以及函数的最值,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数f(x)=x+ax2+blnx,曲线y=f(x)过P(1,0),且在P点处的切线斜率为2.
(1)求a,b的值;
(2)证明:f(x)≤2x-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若,函数是R上的奇函数,当,(i)求实数
的值;(ii)当时,求的解析式;
(2)若方程的两根中,一根属于区间,另一根属于区间,求实数的取 值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图象过点P(0,2),且在点M(-1,f(-1))处的切线方程为.
(Ⅰ)求函数的解析式;
(Ⅱ)求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,满足
(1)若方程有唯一的解;求实数的值;
(2)若函数在区间上不是单调函数,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,在时取得极值.
(Ⅰ)求函数的解析式;
(Ⅱ)若时,恒成立,求实数m的取值范围;
(Ⅲ)若,是否存在实数b,使得方程在区间上恰有两个相异实数根,若存在,求出b的范围,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,函数
①当时,求函数的表达式;
②若,函数上的最小值是2 ,求的值;
③在②的条件下,求直线与函数的图象所围成图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)在R上是偶函数,在区间(-∞,0)上递增,且f(2a2+a+1)<f(2a2-2a+3),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知是定义在上的偶函数,当时,
(1)求函数的解析式;
(2)若不等式的解集为,求的值.

查看答案和解析>>

同步练习册答案