精英家教网 > 高中数学 > 题目详情

已知函数,函数
①当时,求函数的表达式;
②若,函数上的最小值是2 ,求的值;
③在②的条件下,求直线与函数的图象所围成图形的面积.

.⑵.⑶=.

解析试题分析:⑴∵,
∴当时,; 当时,
∴当时,; 当时,.
∴当时,函数.
⑵∵由⑴知当时,,
∴当时, 当且仅当时取等号.
∴函数上的最小值是,∴依题意得.
⑶由解得
∴直线与函数的图象所围成图形的面积
=.
考点:本题主要考查导数计算,应用导数研究函数的单调性、最值,定积分计算。
点评:典型题,在给定区间,导数值非负,函数是增函数,导数值为非正,函数为减函数。求最值的步骤:计算导数、求驻点、讨论驻点附近导数的正负、确定极值、计算的导函数值比较大小。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

理科已知函数,当时,函数取得极大值.
(Ⅰ)求实数的值;(Ⅱ)已知结论:若函数在区间内导数都存在,且,则存在,使得.试用这个结论证明:若,函数,则对任意,都有;(Ⅲ)已知正数满足求证:当时,对任意大于,且互不相等的实数,都有

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

动点P从边长为1的正方形ABCD的顶点A出发顺次经过B、C、D,再回到A,设表示P点行程,表PA的长,求关于的函数关系式。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的极值;
(2)若上恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为常数,)是上的奇函数.
(Ⅰ)求的值;(Ⅱ)讨论关于的方程的根的个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的单调区间;
(2)设,对任意的,总存在,使得不等式成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知x=的一个极值点
(Ⅰ)求的值;
(Ⅱ)求函数的单调增区间;
(Ⅲ)设,试问过点(2,5)可作多少条曲线y=g(x)的切线?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数有三个极值点。
(I)证明:
(II)若存在实数c,使函数在区间上单调递减,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知函数
(1)求函数的单调区间和值域。
(2)设,求函数,若对于任意,总存在,使得成立,求实数的取值范围。

查看答案和解析>>

同步练习册答案