精英家教网 > 高中数学 > 题目详情

已知函数,在时取得极值.
(Ⅰ)求函数的解析式;
(Ⅱ)若时,恒成立,求实数m的取值范围;
(Ⅲ)若,是否存在实数b,使得方程在区间上恰有两个相异实数根,若存在,求出b的范围,若不存在说明理由.

(Ⅰ),(Ⅱ);(Ⅲ)  

解析试题分析:(Ⅰ)…….2分
依题意得,所以,从而….4分
(Ⅱ),得(舍去),
时,
由讨论知的极小值为;最大值为,因为,所以最大值为,所以                                        8分
(Ⅲ)设,即
,令,得;令,得
所以函数的增区间,减区间.zxxk
要使方程有两个相异实根,则有
,解得      12分
考点:本题考查了导数的运用
点评:导数本身是个解决问题的工具,是高考必考内容之一,高考往往结合函数甚至是实际问题考查导数的应用,求单调、最值、完成证明等,请注意归纳常规方法和常见注意点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)若曲线处的切线互相平行,求的值;
(Ⅱ)求的单调区间;
(Ⅲ)设,若对任意,均存在,使得,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的单调区间;
(2)若的图象恰有两个交点,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(其中实数,是自然对数的底数).
(Ⅰ)当时,求函数在点处的切线方程;
(Ⅱ)求在区间上的最小值;
(Ⅲ) 若存在,使方程成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的极值;
(2)若上恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

判断函数 (≠0)在区间(-1,1)上的单调性。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的单调区间;
(2)设,对任意的,总存在,使得不等式成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)求函数的最小正周期;
(2)设函数对任意,有,且当时,;求函数上的解析式。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(满分14分) 定义在上的函数同时满足以下条件:
上是减函数,在上是增函数;②是偶函数;
处的切线与直线垂直.
(1)求函数的解析式;
(2)设,求函数上的最小值.

查看答案和解析>>

同步练习册答案