精英家教网 > 高中数学 > 题目详情

判断函数 (≠0)在区间(-1,1)上的单调性。

时, , 函数在(-1, 1)上为减函数,
时, , 函数在(-1, 1)上为增函数.

解析试题分析:设, 则
,
, ,, , ∴>0,
∴ 当时, , 函数在(-1, 1)上为减函数,
时, , 函数在(-1, 1)上为增函数.
考点:本题主要考查利用“单调函数”定义证明函数的单调性。
点评:中档题,利用“单调函数”的定义证明函数的单调性,遵循“设、算、定、结”四个步骤。关键是变形定号。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

选修4—5:不等式选讲
设函数=
(I)求函数的最小值m;
(II)若不等式恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是R上的奇函数,且当时,,求的解析式。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 .

(1)画出 a =" 0" 时函数的图象;
(2)求函数 的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,在时取得极值.
(Ⅰ)求函数的解析式;
(Ⅱ)若时,恒成立,求实数m的取值范围;
(Ⅲ)若,是否存在实数b,使得方程在区间上恰有两个相异实数根,若存在,求出b的范围,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(a>1).
(1)判断函数f (x)的奇偶性;
(2)求f (x)的值域;
(3)证明f (x)在(-∞,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

有三张正面分别写有数字—2,—1,1的卡片,它们的背面完全相同,将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为x的值。放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y的值,两次结果记为(x,y)。
(1)用树状图或列表法表示(x,y)所有可能出现的结果;
(2)求使分式有意义的(x,y)出现的概率;
(3)化简分式;并求使分式的值为整数的(x,y)出现的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)="|x-1|" +|x-a|,.
(I)当a =4时,求不等式的解集;
(II)若恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数.
(1)设,讨论的单调性;
(2)若对任意,求实数的取值范围.

查看答案和解析>>

同步练习册答案