精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
已知函数.
(1)设,讨论的单调性;
(2)若对任意,求实数的取值范围.

(1)增区间为,减区间为.(2).

解析试题分析:(1),定义域为


上是减函数,又
于是的增区间为,减区间为.
(2)由已知.
时,,不合题意;
时,,由,可得.
.……8分
,方程的判别式
上是增函数,

存在,使得,对任意不合题意.
综上所述,实数的取值范围是.
考点:本题主要考查应用导数研究函数的单调性及极值,根据不等式成立求参数值。
点评:典型题,本题属于导数应用中的基本问题,(II)通过构造函数,并研究函数的单调性,函数值与最值比较,达到解题目的。分类讨论,排除可能情况,值得关注。本题涉及对数函数,要特别注意函数的定义域。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

判断函数 (≠0)在区间(-1,1)上的单调性。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若上单调递增,求的取值范围;
(2)若定义在区间D上的函数对于区间上的任意两个值总有以下不等式成立,则称函数为区间上的 “凹函数”.试证当时,为“凹函数”.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分13分)已知函数.其中表示不超过的最大整数,例如
(Ⅰ)试判断函数的奇偶性,并说明理由;
(Ⅱ)求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(满分14分) 定义在上的函数同时满足以下条件:
上是减函数,在上是增函数;②是偶函数;
处的切线与直线垂直.
(1)求函数的解析式;
(2)设,求函数上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数为常数)是实数集上的奇函数,函数
在区间上是减函数.
(Ⅰ)求实数的值;
(Ⅱ)若上恒成立,求实数的最大值;
(Ⅲ)若关于的方程有且只有一个实数根,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数为自然对数的底数).
时,求的单调区间;若函数上无零点,求最小值;
若对任意给定的,在上总存在两个不同的),使成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)己知函数
(1)求的单调区间;
(2)若时,恒成立,求的取值范围;
(3)若设函数,若的图象与的图象在区间上有两个交点,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是定义在上的奇函数,且当时,
(Ⅰ)求的解析式;
(Ⅱ)直接写出的单调区间(不需给出演算步骤);
(Ⅲ)求不等式解集.

查看答案和解析>>

同步练习册答案