精英家教网 > 高中数学 > 题目详情

已知是定义在上的奇函数,且当时,
(Ⅰ)求的解析式;
(Ⅱ)直接写出的单调区间(不需给出演算步骤);
(Ⅲ)求不等式解集.

(Ⅰ) ;(Ⅱ)递增区间:
(Ⅲ):

解析试题分析:(Ⅰ)当时,
时,则,则
综上:         7分
(Ⅱ)递增区间:       10分
(Ⅲ)当时,,即
时,,即
时,,恒成立
综上,所求解集为:       15分
考点:本题主要考查分段函数的概念,函数的奇偶性、单调性,简单不等式组的解法。
点评:典型题,高一阶段,此类题目较为典型,利用分段函数的奇偶性,确定函数的解析式。解涉及分段函数不等式求解问题,必须注意分段讨论。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数.
(1)设,讨论的单调性;
(2)若对任意,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知定义在上的函数为常数,若为偶函数,
(1)求的值;
(2)判断函数内的单调性,并用单调性定义给予证明;
(3)求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
已知函数
(1)判断的奇偶性;
(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 为常数,
(1)当时,求函数处的切线方程;
(2)当处取得极值时,若关于的方程上恰有两个不相等的实数根,求实数的取值范围;
(3)若对任意的,总存在,使不等式成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数…是自然对数的底数)的最小值为
(Ⅰ)求实数的值;
(Ⅱ)已知,试解关于的不等式
(Ⅲ)已知.若存在实数,使得对任意的,都有,试求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
(1)已知函数
(2)已知函数分别由下表给出:


1
2
 
3
6

1
2

2
1
  
用分段函数表示,并画出函数的图象。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
设函数,其中,且a≠0.
(Ⅰ)当a=2时,求函数在区间[1,e]上的最小值;
(Ⅱ)求函数的单调区间。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知定义域为的偶函数.
(1)求实数的值;
(2)判断并证明的单调性;
(3)若对任意恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案