(本小题满分13分)
设函数,其中,且a≠0.
(Ⅰ)当a=2时,求函数在区间[1,e]上的最小值;
(Ⅱ)求函数的单调区间。
(Ⅰ)-1(Ⅱ)当a<0时,函数区间(0,+∞)上单调递减,当a>0时,函数在(0,a)上单调递增,在(a,+∞)上单调递减
解析试题分析:(Ⅰ)由题意。 1分
科目:高中数学
来源:
题型:解答题
(本小题满分12分)己知函数
科目:高中数学
来源:
题型:解答题
(本小题满分14分)
科目:高中数学
来源:
题型:解答题
(本小题满分12分)
科目:高中数学
来源:
题型:解答题
已知函数。
科目:高中数学
来源:
题型:解答题
已知定义在实数集上的奇函数(、)过已知点.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
令。 2分
当x变化时,的变化情况如表:
即函数在(1,2)上单调递增,在(2,e)上单调递减。 4分x 1 (1,2) 2 (2,e) e + 0 - -1 ↗ 极大值 ↘ 2-e
因为,
所以当x=1时,在区间[1,e]上有最小值-1。 5分
(Ⅱ)函数的定义域为(0,+∞)。 6分
求导,得。 7分
当a<0时,
由x>0,得。
所以在区间(0,+∞)上单调递减; 9分
当a>0时,
令=0,得x=a。 10分
当x变化时,与的变化情况如下表:x (0,a) a (a,+∞)
(1)求的单调区间;
(2)若时,恒成立,求的取值范围;
(3)若设函数,若的图象与的图象在区间上有两个交点,求的取值范围。
已知函数
(Ⅰ)若函数处取得极值,求实数a的值;
(Ⅱ)在(I)条件下,若直线与函数的图象相切,求实数k的值;
(Ⅲ)记,求满足条件的实数a的集合.
已知令.
(1)求的表达式;
(2)若函数和函数的图象关于原点对称,
(ⅰ)求函数的解析式;
(ⅱ)若在区间上是增函数,求实数l的取值范围.
(1)若,求a的值;
(2)若a>1,求函数f(x)的单调区间与极值点;
(3)设函数是偶函数,若过点A(1,m)可作曲线y=f(x)的三条切线,求实数m的范围。
(Ⅰ)求函数的解析式;
(Ⅱ)试证明函数在区间是增函数;若函数在区间(其中)也是增函数,求的最小值;
(Ⅲ)试讨论这个函数的单调性,并求它的最大值、最小值,在给出的坐标系(见答题卡)中画出能体现主要特征的图简;
(Ⅳ)求不等式的解集.
版权声明:本站所有文章,图片来源于网络,著作权及版权归原作者所有,转载无意侵犯版权,如有侵权,请作者速来函告知,我们将尽快处理,联系qq:3310059649。
ICP备案序号: 沪ICP备07509807号-10 鄂公网安备42018502000812号