精英家教网 > 高中数学 > 题目详情

已知定义在实数集上的奇函数)过已知点
(Ⅰ)求函数的解析式;
(Ⅱ)试证明函数在区间是增函数;若函数在区间(其中)也是增函数,求的最小值;
(Ⅲ)试讨论这个函数的单调性,并求它的最大值、最小值,在给出的坐标系(见答题卡)中画出能体现主要特征的图简;
(Ⅳ)求不等式的解集.

(1);(2)用定义法证明,的最小值为.(3).(4)

解析试题分析:(1)由奇函数,得,又过点得;所以,显然可以发现它是一个奇函数.    (3分)
(2)设,有
这样就有
即函数在区间是增函数
对于函数在区间)也是增函数,
,有
这样,欲使成立,
须使成立,从而只要就可以,所以,就能使函数在区间是增函数;的最小值为.   (3分)
(3)由(2)可知函数在区间是增函数;
由奇函数可知道,函数在区间也是增函数;
那么,在区间呢?设,有;这样,就有成立,即,所以,函数在区间是减函数.                                 
这样,就有
图像如下所示.  (3分)
(4)因为,由(3)知道函数在区间是减函数,这样,不等式可以化为,即;    
它的解集为.   (3分)

考点:函数的奇偶性;函数的单调性、最值;函数的图片;
点评:(1)若f(x)是奇函数,且在x=0处有定义,则f(0)一定为0.(2)用定义法证明函数的单调性的步骤:一设二作差三变形四判断符号五得出结论,其中最重要的是四变形,最好变成几个因式乘积的形式,这样便于判断符号。(3)解这类不等式的关键是根据函数的单调性脱去“f”号。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
已知函数
(1)判断的奇偶性;
(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
设函数,其中,且a≠0.
(Ⅰ)当a=2时,求函数在区间[1,e]上的最小值;
(Ⅱ)求函数的单调区间。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,(为自然对数的底数).
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)函数在区间上恒为正数,求的最小值;
(Ⅲ)若对任意给定的,在上总存在两个不同的,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题12分)
,其中.
(1) 若,求的值;
(2)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
一片森林原来面积为,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的,已知到今年为止,森林剩余面积为原来的.
(Ⅰ)求每年砍伐面积的百分比;
(Ⅱ)到今年为止,该森林已砍伐了多少年?
(Ⅲ)今后最多还能砍伐多少年?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知定义域为的偶函数.
(1)求实数的值;
(2)判断并证明的单调性;
(3)若对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(满分12分)
已知函数.
(1)判断并证明函数的单调性;
(2)若函数为奇函数,求的值;
(3)在(2)的条件下,若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)设是函数的两个极
值点,其中.(Ⅰ) 求的取值范围;
(Ⅱ) 若,求的最大值.

查看答案和解析>>

同步练习册答案