精英家教网 > 高中数学 > 题目详情

(本小题满分14分)
已知函数…是自然对数的底数)的最小值为
(Ⅰ)求实数的值;
(Ⅱ)已知,试解关于的不等式
(Ⅲ)已知.若存在实数,使得对任意的,都有,试求的最大值.

(1) (2)构造函数运用导数求解最值得到不等式的证明。
(3) 满足条件的最大整数的值为3.

解析试题分析:解:(Ⅰ)因为,所以,故
因为函数的最小值为,所以.                ……………… 3分
(Ⅱ)由(Ⅰ)得,.
时,,……… 5分
故不等式可化为:

,      ……………… 6分

所以,当时,不等式的解为
时,不等式的解为.   …………… 8分
(Ⅲ)∵当时,
.
∴原命题等价转化为:存在实数,使得不等式对任意恒成立.    …………… 10分
.
,∴函数为减函数. …………… 11分
又∵,∴.   …………… 12分
∴要使得对值恒存在,只须.………… 13分

且函数为减函数,
∴满足条件的最大整数的值为3.…… 14分
考点:导数,函数。
点评:本小题主要考查函数、导数等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、分类与整合思想、函数与方程思想、数形结合思想等,属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数为常数)是实数集上的奇函数,函数
在区间上是减函数.
(Ⅰ)求实数的值;
(Ⅱ)若上恒成立,求实数的最大值;
(Ⅲ)若关于的方程有且只有一个实数根,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(14分)已知函数
(1) 当a= -1时,求函数的最大值和最小值;
(2) 求实数a的取值范围,使y=f(x)在区间上是单调函数
(3) 求函数f(x)的最小值g(a),并求g(a)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知函数
(I)求的最小值;
(II)若对所有都有,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是定义在上的奇函数,且当时,
(Ⅰ)求的解析式;
(Ⅱ)直接写出的单调区间(不需给出演算步骤);
(Ⅲ)求不等式解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
设函数的导函数为,且
(Ⅰ)求函数的图象在x=0处的切线方程;
(Ⅱ)求函数的极值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数
(Ⅰ)若函数处取得极值,求实数a的值;
(Ⅱ)在(I)条件下,若直线与函数的图象相切,求实数k的值;
(Ⅲ)记,求满足条件的实数a的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)确定上的单调性;
(Ⅱ)设上有极值,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=ax-(a+1)ln(x+1),其中a>0.
(1)求f(x)的单调区间;
(2)当x>0时,证明不等式:<ln(x+1)<x;
(3)设f(x)的最小值为g(a),证明不等式:-1<ag(a)<0

查看答案和解析>>

同步练习册答案