(本小题满分13分)
设函数的导函数为,且。
(Ⅰ)求函数的图象在x=0处的切线方程;
(Ⅱ)求函数的极值。
(Ⅰ)(Ⅱ)当x=-3时,有极大值27;当x=1时,有极小值-5
解析试题分析:(Ⅰ)因为, 1分
所以由,得a=3, 3分
则。
所以, 4分
所以函数的图象在x=0处的切线方程为。 6分
(Ⅱ)令,得x=-3或x=1。 7分
当x变化时,与的变化情况如下表:
11分x (-∞,-3) -3 (-3,1) 1 (1,+∞) + 0 - 0 + ↗ 27 ↘ -5 ↗
即函数在(-∞,-3)上单调递增,在(-3,1)上单调递减,在(1,+∞)上单调递增。
所以当x=-3时,有极大值27;当x=1时,有极小值-5。 13分
考点:导数的几何意义及用导数求函数极值
点评:函数在某点处的导数等于该点处的切线斜率,求函数极值先要通过导数求的极值点及单调区间,从而确定是极大值还是极小值
科目:高中数学 来源: 题型:解答题
(本小题满分14分)已知函数。
(Ⅰ)若函数在定义域内为增函数,求实数的取值范围;
(Ⅱ)设,若函数存在两个零点,且满足,问:函数在处的切线能否平行于轴?若能,求出该切线方程;若不能,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
(1)若函数y=f(x)的图象切x轴于点(2,0),求a、b的值;
(2)设函数y="f(x)" 的图象上任意一点的切线斜率为k,试求的充要条件;(3)若函数y=f(x)的图象上任意不同的两点的连线的斜率小于1,求证。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
已知函数(…是自然对数的底数)的最小值为.
(Ⅰ)求实数的值;
(Ⅱ)已知且,试解关于的不等式 ;
(Ⅲ)已知且.若存在实数,使得对任意的,都有,试求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
对于函数,若存在x0∈R,使方程成立,则称x0为的不动点,已知函数(a≠0).
(1)当时,求函数的不动点;
(2)若对任意实数b,函数恒有两个相异的不动点,求a的取值范围;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com