对于函数
,若存在x0∈R,使方程
成立,则称x0为
的不动点,已知函数
(a≠0).
(1)当
时,求函数
的不动点;
(2)若对任意实数b,函数
恒有两个相异的不动点,求a的取值范围;
科目:高中数学 来源: 题型:解答题
设函数f(x)=ax-(a+1)ln(x+1),其中a>0.
(1)求f(x)的单调区间;
(2)当x>0时,证明不等式:
<ln(x+1)<x;
(3)设f(x)的最小值为g(a),证明不等式:-1<ag(a)<0
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(满分10分)
已知函数
是定义在R上的偶函数,当
时,
.![]()
(1)画出函数
的图象(在如图的坐标系中),并求出
时,
的解析式;
(2)根据图象写出
的单调区间及值域.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分14分,第1小题6分,第2小题8分)
已知函数
,其中常数a > 0.
(1) 当a = 4时,证明函数f(x)在
上是减函数;
(2) 求函数f(x)的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(11分)设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为
和
组成数对(
,并构成函数![]()
(Ⅰ)写出所有可能的数对(
,并计算
,且
的概率;
(Ⅱ)求函数
在区间[
上是增函数的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(12分)已知函数
为奇函数,
为常数,
(1)求实数
的值;
(2)证明:函数
在区间
上单调递增;
(3)若对于区间
上的每一个
值,不等式
恒成立,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com