精英家教网 > 高中数学 > 题目详情


(1)求的表达式,并判断的奇偶性;
(2)试证明:函数的图象上任意两点的连线的斜率大于0;
(3)对于,当时,恒有求m的取值范围。

(1)奇函数
(2)当时,

时,综上,为增函数,由增函数的定义知:
故任意两点的连线斜率都大于零。(3)1<m

解析试题分析:(1)令代入中,得
的定义域为R,关于原点对称。
(2)当时,

时,
综上,为增函数,由增函数的定义知:
故任意两点的连线斜率都大于零。
(3)由(1)知为奇函数,由(2)知为增函数,故有
考点:本题考查了函数的性质的综合运用
点评:函数的单调性、奇偶性、周期性通常用于求解函数中的参数以及参数的范围,利用函数的性质往往能使问题简化

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)若函数y=f(x)的图象切x轴于点(2,0),求a、b的值;
(2)设函数y="f(x)" 的图象上任意一点的切线斜率为k,试求的充要条件;(3)若函数y=f(x)的图象上任意不同的两点的连线的斜率小于1,求证

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数处取得极小值2.
(1)求函数的解析式;
(2)求函数的极值;
(3)设函数,若对于任意,总存在,使得,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知).
(Ⅰ)求的定义域;
(Ⅱ)求使取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
一片森林原来面积为,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的,已知到今年为止,森林剩余面积为原来的.
(Ⅰ)求每年砍伐面积的百分比;
(Ⅱ)到今年为止,该森林已砍伐了多少年?
(Ⅲ)今后最多还能砍伐多少年?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
∈R,函数 =),其中e是自然对数的底数.
(1)判断f (x)在R上的单调性;
(2)当– 1 << 0时,求f (x)在[1,2]上的最小值.
选做题:请考生从给出的3道题中任选一题做答,并在答题卡上把所选题目的题号用2B铅笔涂黑.注意所做题目的题号必须与所涂的题号一致,在答题卡选答区域指定位置答题.如果多做,则按所做的第一题计分.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对于函数,若存在x0∈R,使方程成立,则称x0的不动点,已知函数a≠0).
(1)当时,求函数的不动点;
(2)若对任意实数b,函数恒有两个相异的不动点,求a的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知函数
(Ⅰ)求函数的单调区间;
(Ⅱ)a为何值时,方程有三个不同的实根.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)函数为奇函数,且在上为增函数,  , 若对所有都成立,求的取值范围。

查看答案和解析>>

同步练习册答案