精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
∈R,函数 =),其中e是自然对数的底数.
(1)判断f (x)在R上的单调性;
(2)当– 1 << 0时,求f (x)在[1,2]上的最小值.
选做题:请考生从给出的3道题中任选一题做答,并在答题卡上把所选题目的题号用2B铅笔涂黑.注意所做题目的题号必须与所涂的题号一致,在答题卡选答区域指定位置答题.如果多做,则按所做的第一题计分.

(1)在区间()上, f (x)单调递增;在区间(,)上, f (x)单调递减;在区间()上, f (x)单调递增.            
(2)f (x)在[1,2]上的最小值为f(2) =

解析试题分析:(1)=.               ……2 分
因为,以下讨论函数g (x) = –a+ 2ax – a – 1值的情况.
当a = 0时,g (x) =" –1" < 0,即,所以f (x)在R上是减函数.                ……3分
当a > 0时,g (x) = 0的判别式Δ= 4– 4(+a) =" –4a" < 0,
所以g(x)<0,即,所以f(x)在R上是减函数.                                 ……5分
当a < 0时,g (x) = 0有两个根,,并且<
所以,在区间()上,g (x) > 0,即,f (x)在此区间上 是增函数.
在区间(,)上,g (x) < 0,即,f (x)在此区间上是减函数.
在区间()上,g (x) > 0,即,f (x)在此区间上是增函数.                                                                                ……7分
综上,当a≥0时,f (x)在R上是减函数;
当a < 0时,f (x)在()上单调递增,在(,)上单调递减,在()上单调递增.                                                                        ……8分
(2)当 – 1 < a < 0时,,               ……10分
所以,在区间[1,2]上,函数f (x)单调递减,                                         ……11分
所以,函数f (x)在区间[1,2]上的最小值为f (2) =.                           ……12分
考点:本小题主要考查利用导数考查函数的单调性和最值问题,考查学生分类讨论思想的应用.
点评:在高考解答题中,经常用到分类讨论思想,分类讨论时要准确确定分类标准,分类标准要不重不漏.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其图象在点 处的切线方程为
(1)求的值;
(2)求函数的单调区间,并求出在区间[-2,4]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
设函数为实常数)为奇函数,函数
(Ⅰ)求的值;
(Ⅱ)求上的最大值;
(Ⅲ)当时,对所有的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


(1)求的表达式,并判断的奇偶性;
(2)试证明:函数的图象上任意两点的连线的斜率大于0;
(3)对于,当时,恒有求m的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(满分10分)
已知函数是定义在R上的偶函数,当时,.

(1)画出函数的图象(在如图的坐标系中),并求出时,的解析式;
(2)根据图象写出的单调区间及值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
函数对任意实数都有,
(Ⅰ)分别求的值;
(Ⅱ)猜想 的表达式,并用数学归纳法证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分15分)定义在上的奇函数,满足 ,又当时,是减函数,求的取值范围。

查看答案和解析>>

同步练习册答案