(本题满分12分)
函数
对任意实数
都有
,![]()
(Ⅰ)分别求
的值;
(Ⅱ)猜想
的表达式,并用数学归纳法证明你的结论.
科目:高中数学 来源: 题型:解答题
(本小题14分)已知函数
,设
。
(Ⅰ)求F(x)的单调区间;
(Ⅱ)若以
图象上任意一点
为切点的切线的斜率
恒成立,求实数
的最小值。
(Ⅲ)是否存在实数
,使得函数
的图象与
的图象恰好有四个不同的交点?若存在,求出
的取值范围,若不存在,说名理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
设
∈R,函数
=
(
),其中e是自然对数的底数.
(1)判断f (x)在R上的单调性;
(2)当– 1 <
< 0时,求f (x)在[1,2]上的最小值.
选做题:请考生从给出的3道题中任选一题做答,并在答题卡上把所选题目的题号用2B铅笔涂黑.注意所做题目的题号必须与所涂的题号一致,在答题卡选答区域指定位置答题.如果多做,则按所做的第一题计分.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.
已知函数
=
.
(1)判断函数
的奇偶性,并证明;
(2)求
的反函数
,并求使得函数
有零点的实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
若函数
对任意的实数
,
,均有
,则称函数
是区间
上的“平缓函数”.
(1) 判断
和
是不是实数集R上的“平缓函数”,并说明理由;
(2) 若数列
对所有的正整数
都有
,设
,
求证:
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com