(本题满分12分)已知函数,,其中,设.
(1)判断的奇偶性,并说明理由;
(2)若,求使成立的x的集合。
(1)奇函数;(2){x|0<x<1}。
解析试题分析:(1)奇函数---------------------------1
h(x)=loga(1+x)-loga(1-x)=loga
∵
∴-1<x<1
∴定义域(-1,1)------------------3
又X(-1,1)
h (-x) =loga= —— loga= - h (x)
所以h (x)为奇函数----------------------6
(2) ∵f(3)=2
∴a=2---------------------------------7
h(x) >0
∴h(x)=log2(1+x)-log2(1-x)=log2>0
解之得0<x<1--------------------11
所以,解集为{x|0<x<1}------------------12
考点:本题主要考查对数函数的性质,函数的奇偶性,简单不等式组的解法。
点评:典型题,将对数函数的性质,函数的奇偶性,简单不等式组的解法综合在一起进行考查,对考查学生综合应用数学知识的能力有较好的作用。
科目:高中数学 来源: 题型:解答题
(满分10分)
已知函数是定义在R上的偶函数,当时,.
(1)画出函数的图象(在如图的坐标系中),并求出时,的解析式;
(2)根据图象写出的单调区间及值域.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分8分)已知奇函数
(1)求实数m的值,并在给出的直角坐标系中画出的图象;
(2)若函数在区间[-1,-2]上单调递增,试确定的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com