精英家教网 > 高中数学 > 题目详情

(本小题满分14分)
若函数对任意的实数,均有,则称函数是区间上的“平缓函数”.  
(1) 判断是不是实数集R上的“平缓函数”,并说明理由;
(2) 若数列对所有的正整数都有 ,设,
求证: .

(1)不是,理由见解析   (2)见解析

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,其图象在点 处的切线方程为
(1)求的值;
(2)求函数的单调区间,并求出在区间[-2,4]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(满分10分)
已知函数是定义在R上的偶函数,当时,.

(1)画出函数的图象(在如图的坐标系中),并求出时,的解析式;
(2)根据图象写出的单调区间及值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
函数对任意实数都有,
(Ⅰ)分别求的值;
(Ⅱ)猜想 的表达式,并用数学归纳法证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(11分)设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为组成数对(,并构成函数
(Ⅰ)写出所有可能的数对(,并计算,且的概率;
(Ⅱ)求函数在区间[上是增函数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数是奇函数.
(1)求实数的值;
(2)判断函数上的单调性,并给出证明;
(3)当时,函数的值域是,求实数的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知函数.
(1)设的定义域为A,求集合A;
(2)判断函数在(1,+)上单调性,并用定义加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分15分)定义在上的奇函数,满足 ,又当时,是减函数,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的定义域;
(2)讨论的奇偶性;
(3)讨论上的单调性.

查看答案和解析>>

同步练习册答案