精英家教网 > 高中数学 > 题目详情

(本题满分12分)已知函数.
(1)设的定义域为A,求集合A;
(2)判断函数在(1,+)上单调性,并用定义加以证明.

(1);(2)用定义证明函数单调性的步骤;一设二作差三变形四判断符号五得出结论。

解析试题分析:(1)由,得
所以,函数的定义域为……………………… 4分
(2)函数上单调递减.  ………………………………6分
证明:任取,设

…………………… 8分


,所以 故
因此,函数上单调递减.  ………………………12分
考点:函数定义域的求法;用定义证明函数的单调性。
点评:用定义证明函数单调性的步骤;一设二作差三变形四判断符号五得出结论。尤其是其中的三变形的步骤特别重要,最好变成几个因式乘积的形式。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知).
(Ⅰ)求的定义域;
(Ⅱ)求使取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知函数
(Ⅰ)求函数的单调区间;
(Ⅱ)a为何值时,方程有三个不同的实根.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
若函数对任意的实数,均有,则称函数是区间上的“平缓函数”.  
(1) 判断是不是实数集R上的“平缓函数”,并说明理由;
(2) 若数列对所有的正整数都有 ,设,
求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题9分)函数
(Ⅰ)判断并证明的奇偶性;
(Ⅱ)求证:在定义域内恒为正。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数上的增函数,设
用定义证明:上的增函数;(6分)
证明:如果,则>0,(6分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)函数为奇函数,且在上为增函数,  , 若对所有都成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分16分)
已知为此函数的定义域)同时满足下列两个条件:①函数
内单调递增或单调递减;②如果存在区间,使函数在区间上的值域为,那么称为闭函数。请解答以下问题:
(1)判断函数是否为闭函数?并说明理由;
(2)求证:函数)为闭函数;
(3)若是闭函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12分).已知函数f ()=, 若2)=1;
(1) 求a的值; (2)求的值;
(3)解不等式

查看答案和解析>>

同步练习册答案