精英家教网 > 高中数学 > 题目详情

12分).已知函数f ()=, 若2)=1;
(1) 求a的值; (2)求的值;
(3)解不等式

(1)a="2" ;  (2)4 ;(3)

解析试题分析:(1)因为函数f ()=, 若2)=1,所以,所以a=2;
(2)由(1)知,f ()=,所以=
(3)易知f(x)的定义域为,由,得:,解得。所以解集为.
考点:本题考查函数的值;函数单调性的性质。
点评:本题主要考查了函数求值,以及对数不等式的解法,同时考查了计算能力,属于基础题.在解对数不等式时要注意限制函数的定义域。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知函数.
(1)设的定义域为A,求集合A;
(2)判断函数在(1,+)上单调性,并用定义加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里处,如图,现假设:①失事船的移动路径可视为抛物线;②定位后救援船即刻沿直线匀速前往救援;③救援船出发小时后,失事船所在位置的横坐标为

(1)当时,写出失事船所在位置的纵坐标,若此时两船恰好会合,求救援船速度的大小和方向 (若确定方向时涉及到的角为非特殊角,用符号及其满足的条件表示即可)
(2)问救援船的时速至少是多少海里才能追上失事船?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的定义域;
(2)讨论的奇偶性;
(3)讨论上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数f (x)=loga(a>0,a≠1).
(1)求函数f (x)的定义域.
(2)求使f (x)>0的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知函数y=的定义域为R,解关于x的不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设f(x)=2x3+ax2+bx+1的导数为f′(x),若函数y=f′(x)的图象关于直线x=-对称,且f′(1)=0.
(1)求实数a,b的值;
(2)讨论函数f(x)的单调性,并求出单调区间 。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)已知函数其中a>0,且a≠1,
(1)求函数的定义域;
(2)当0<a<1时,解关于x的不等式
(3)当a>1,且x∈[0,1)时,总有恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是定义域为上的奇函数,且
(1)求的解析式,    
(2)用定义证明:上是增函数,
(3)若实数满足,求实数的范围.

查看答案和解析>>

同步练习册答案