精英家教网 > 高中数学 > 题目详情

已知函数).
(1)若的定义域和值域均是,求实数的值;
(2)若对任意的,总有,求实数的取值范围.

(1)(2)

解析试题分析:(1)∵),
上是减函数,
又定义域和值域均为,∴ ,
  , 解得 .                               ……4分
(2)若,又,且,
.                  ……6分
∵对任意的,总有
,                                             ……8分

解得 , 又, ∴
,         ……10分
显然成立,
综上。                                                       ……12分
考点:本小题主要考查二次函数的单调性、最值的求解和应用,考查含绝对值的不等式的求解和应用,考查学生转化问题的能力和分类讨论思想的应用.
点评:求解含绝对值的不等式,关键是想方设法去掉绝对值号,而去绝对值号的方法一般是分类讨论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知函数
(Ⅰ)若函数在定义域内为增函数,求实数的取值范围;
(Ⅱ)设,若函数存在两个零点,且满足,问:函数处的切线能否平行于轴?若能,求出该切线方程;若不能,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知命题P:函数R上的减函数,命题Q:在 时,不等式恒成立,若命题“”是真命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数处取得极小值2.
(1)求函数的解析式;
(2)求函数的极值;
(3)设函数,若对于任意,总存在,使得,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,(为自然对数的底数).
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)函数在区间上恒为正数,求的最小值;
(Ⅲ)若对任意给定的,在上总存在两个不同的,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知).
(Ⅰ)求的定义域;
(Ⅱ)求使取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
一片森林原来面积为,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的,已知到今年为止,森林剩余面积为原来的.
(Ⅰ)求每年砍伐面积的百分比;
(Ⅱ)到今年为止,该森林已砍伐了多少年?
(Ⅲ)今后最多还能砍伐多少年?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对于函数,若存在x0∈R,使方程成立,则称x0的不动点,已知函数a≠0).
(1)当时,求函数的不动点;
(2)若对任意实数b,函数恒有两个相异的不动点,求a的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题9分)函数
(Ⅰ)判断并证明的奇偶性;
(Ⅱ)求证:在定义域内恒为正。

查看答案和解析>>

同步练习册答案