【题目】如图,在折线
中,
,
,
分别是
的中点,若折线上满足条件
的点
至少有
个,则实数
的取值范围是___________.
![]()
【答案】![]()
【解析】
以BC的垂直平分线为y轴,以BC为x轴,建立如图所示的平面直角坐标系,分别表示各个点的坐标,设P(x,y),根据向量的数量积可得当k+9>0时,点P的轨迹为以(0,
)为圆心,以
为半径的圆,结合图象,即可求出满足条件
的点P至少有4个的k的取值范围.
解:以BC的垂直平分线为y轴,以BC为x轴,建立如图所示的平面直角坐标系,
∵AB=BC=CD=4,∠ABC=∠BCD=120°,
∴B(﹣2.0),C(2,0),A(﹣4,2
),D(4,2
),
∵E、F分别是AB、CD的中点,
∴E(﹣3,
),F(3,
),
设P(x,y),﹣4≤x≤4,0≤y≤2
,
∵
,
∴(﹣3﹣x,
(3﹣x,
y)=
,
即
,
当k+9>0时,点P的轨迹为以(0,
)为圆心,以
为半径的圆,
当圆与直线DC相切时,此时圆的半径r
,此时点有2个,
当圆经过点C时,此时圆的半径为r
,此时点P有4个,
∵满足条件
的点P至少有4个,结合图象可得,
∴
k+9≤7,
解得
k≤﹣2,
故实数k的取值范围为[
,﹣2],
故答案为:[
,﹣2]
![]()
科目:高中数学 来源: 题型:
【题目】春节来临之际,某超市为了确定此次春节年货的进货方案,统计去年春节前后50天年货的日销售量(单位:kg),得到如图所示的频率分布直方图.
![]()
(1)求这50天超市日销售量
的平均数;(视频率为概率,以各组区间的中点值代表该组的值)
(2)先从日销售在
,
,
内的天数中,按分层抽样随机抽取4天进行比较研究,再从中选2天,求这2天的日销售量都在
内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(Ⅰ)若关于
的不等式
在
上恒成立,求
的取值范围;
(Ⅱ)设函数
,在(Ⅰ)的条件下,试判断
在
上是否存在极值.若存在,判断极值的正负;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
满足
,其中
.
(1)若数列前四项
,
,
,
依次成等差数列,求
,
的值;
(2)若
,且数列
为等比数列,求
的值;
(3)若
,且
是数列
的最小项,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】垃圾分一分,城市美十分;垃圾分类,人人有责.某市为进一步推进生活垃圾分类工作,调动全民参与的积极性,举办了“垃圾分类游戏挑战赛”.据统计,在为期
个月的活动中,共有
万人次参与.为鼓励市民积极参与活动,市文明办随机抽取
名参与该活动的网友,以他们单次游戏得分作为样本进行分析,由此得到如下频数分布表:
单次游戏得分 |
|
|
|
|
|
|
频数 |
|
|
|
|
|
|
(1)根据数据,估计参与活动的网友单次游戏得分的平均值及标准差(同一组中的数据用该组区间的中点值作代表);(其中标准差的计算结果要求精确到
)
(2)若要从单次游戏得分在
、
、
的三组参与者中,用分层抽样的方法选取
人进行电话回访,再从这
人中任选
人赠送话费,求此
人单次游戏得分不在同一组内的概率.
附:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】华东师大二附中乐东黄流中学位于我国南海边,有一片美丽的沙滩和一弯天然的海滨浴场.如图,海岸线MAN,
,
(海岸线MAN上方是大海),现用长为BC的栏网围成一个三角形学生游泳场所,其中
.
![]()
(1)若
,求三角形游泳场所面积最大值;
(2)若BC=600,
,由于学生人数的增加需要扩大游泳场所面积,现在折线MBCN上方选点D,现用长为BD,DC的栏围成一个四边形游泳场所DBAC,使
,求四边形游泳场所DBAC的最大面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设F1、F2分别为椭圆C:
=1(a>b>0)的左、右焦点,点A为椭圆C的左顶点,点B为椭圆C的上顶点,且|AB|=
,△BF1F2为直角三角形.
(1)求椭圆C的方程;
(2)设直线y=kx+2与椭圆交于P、Q两点,且OP⊥OQ,求实数k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解贵州省某州2020届高三理科生的化学成绩的情况,该州教育局组织高三理科生进行了摸底考试,现从参加考试的学生中随机抽取了100名理科生,,将他们的化学成绩(满分为100分)分为![]()
![]()
![]()
![]()
![]()
6组,得到如图所示的频率分布直方图.
![]()
(1)求a的值;
(2)记A表示事件“从参加考试的所有理科生中随机抽取一名学生,该学生的化学成绩不低于70分”,试估计事件A发生的概率;
(3)在抽取的100名理科生中,采用分层抽样的方法从成绩在
内的学生中抽取10名,再从这10名学生中随机抽取4名,记这4名理科生成绩在
内的人数为X,求X的分布列与数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com