【题目】已知数列
满足
,其中
.
(1)若数列前四项
,
,
,
依次成等差数列,求
,
的值;
(2)若
,且数列
为等比数列,求
的值;
(3)若
,且
是数列
的最小项,求
的取值范围.
【答案】(1)
(2)答案不唯一,见解析 (3)![]()
【解析】
(1)由已知求出
,由等差数列的定义得
的方程可求解;
(2)由
求出
值,代入已知递推式求出
,验证它是等比数列;
(3)当
时,用累加法求得
,由
恒成立得,
恒成立.用作差法证明数列
是递增数列,从而可得最小值,得
的一个范围,再由
得
的另外一些范围后可得
的范围
(1)由已知递推式可得,
,
;
,
,
.
由等差数列知,
,得
;
(2)
,则
,
由
,得
或
.
当
时,
,
,满足题意;
当
时,由累加法得
,满足题意;
(3)
时,
,
![]()
,
当
时,由
恒成立得,
恒成立.
设
,只需求出
的最小值.
.
当
时,
,有
;
当
时,直接验证
;
故
为最小值,其值为
,∴
;
当
时,需满足
恒成立,
对
验证,
,
;
,
;
,
;
,
.
综上,
.
科目:高中数学 来源: 题型:
【题目】某电器专卖店销售某种型号的空调,记第
天(
,
)的日销售量为
(单位;台).函数
图象中的点分别在两条直线上,如图,该两直线交点的横坐标为
,已知
时,函数
.
![]()
(1)当
时,求函数
的解析式;
(2)求
的值及该店前
天此型号空调的销售总量;
(3)按照经验判断,当该店此型号空调的销售总量达到或超过
台,且日销售量仍持续增加时,该型号空调开始旺销,问该店此型号空调销售到第几天时,才可被认为开始旺销?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,某传动装置由两个陀螺
,
组成,陀螺之间没有滑动,每个陀螺都由具有公共轴的圆锥和圆柱两个部分构成,每个圆柱的底面半径和高都是相应圆锥底面半径的
,且
,
的轴相互垂直,它们相接触的直线与
的轴所成角
,若陀螺
中圆锥的底面半径为
(
);
![]()
(1)求陀螺
的体积;
(2)当陀螺
转动一圈时,陀螺
中圆锥底面圆周上一点
转动到点
,求
与
之间的距离;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
、
、
、
(
),都在函数
(
,
)的图像上;
(1)若数列
是等差数列,求证:数列
是等比数列;
(2)设
,函数
的反函数为
,若函数
与函数
的图像有公共点
,求证:
在直线
上;
(3)设
,
(
),过点
、
的直线
与两坐标轴围成的三角形面积为
,问:数列
是否存在最大项?若存在,求出最大项的值,若不存在,请说明理由;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:y2=2px过点P(1,1).过点(0,
)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP,ON交于点A,B,其中O为原点.
(Ⅰ)求抛物线C的方程,并求其焦点坐标和准线方程;
(Ⅱ)求证:A为线段BM的中点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图一块长方形区域
,
,
,在边
的中点
处有一个可转动的探照灯,其照射角
始终为
,设
,探照灯照射在长方形
内部区域的面积为
.
![]()
(1)当
时,求
关于
的函数关系式;
(2)当
时,求
的最大值;
(3)若探照灯每9分钟旋转“一个来回”(
自
转到
,再回到
,称“一个来回”,忽略
在
及
处所用的时间),且转动的角速度大小一定,设
边上有一点
,且
,求点
在“一个来回”中被照到的时间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在新中国成立70周年国庆阅兵庆典中,众多群众在脸上贴着一颗红心,以此表达对祖国的热爱之情,在数学中,有多种方程都可以表示心型曲线,其中有著名的笛卡尔心型曲线,如图,在直角坐标系中,以原点O为极点,x轴正半轴为极轴建立极坐标系.图中的曲线就是笛卡尔心型曲线,其极坐标方程为
(
),M为该曲线上的任意一点.
![]()
(1)当
时,求M点的极坐标;
(2)将射线OM绕原点O逆时针旋转
与该曲线相交于点N,求
的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com