精英家教网 > 高中数学 > 题目详情
20.已知a+a-1=7,求下列各式的值:
(1)a2+a-2
(2)a-a-1

分析 (1)利用平方关系,求解即可.
(2)利用平方差公式化简求解即可.

解答 解:(1)a+a-1=7,
可得a2+a-2+2=49,
∴a2+a-2=47.
(2)a2+a-2+2=49,
∴a2+a-2-2=45,
∴a-a-1=±$3\sqrt{5}$.

点评 本题考查有理指数幂的化简求值,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.如图,在底面为菱形的四棱锥S-ABCD中,∠ABC=60°,SA=AB=a,SB=SD=$\sqrt{2}$SA,点P在SD上,且SD=3PD,
(1)证明:BD⊥平面SAC;
(2)若过点B的平面与SC、SD分别交于点E、F,且平面BEF∥平面APC,求SE的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.关于x的一元二次方程x2+2mx+m2-$\frac{m}{2}$-$\frac{3}{2}$=0没有正实根,则m的取值范围为m≥$\frac{3}{2}$或m<-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.等比数列中,a1=a,公比为q,前n项和Sn,求S1+S2+S3+…+Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.当x∈R,|x|<1时,有如下表达式:1+x+x2+…+xn+…=$\frac{1}{1-x}$;
两边同时积分得:${∫}_{0}^{\frac{1}{2}}$1dx+${∫}_{0}^{\frac{1}{2}}$xdx+${∫}_{0}^{\frac{1}{2}}$x2dx+…${∫}_{0}^{\frac{1}{2}}$xndx+…=${∫}_{0}^{\frac{1}{2}}$$\frac{1}{1-x}$dx;
从而得到如下等式:1×$\frac{1}{2}$+$\frac{1}{2}$×($\frac{1}{2}$)2+$\frac{1}{3}$×($\frac{1}{2}$)3+…$\frac{1}{n+1}$×($\frac{1}{2}$)n+1+…=ln2;
请根据以下材料所蕴含的数学思想方法,计算:C${\;}_{1}^{0}$×$\frac{1}{2}$+$\frac{1}{2}$C${\;}_{n}^{1}$×($\frac{1}{2}$)2+$\frac{1}{3}$C${\;}_{n}^{2}$×($\frac{1}{2}$)3+…$\frac{1}{n+1}$C${\;}_{n}^{n}$×($\frac{1}{2}$)n+1=$\frac{1}{n+1}[(\frac{3}{2})^{n+1}-1]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知sinθ=-$\frac{1}{3}$,θ∈(-$\frac{π}{2}$,$\frac{π}{2}$),则sin(θ-5π)•sin($\frac{3π}{2}$-θ)的值是-$\frac{2\sqrt{2}}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数y=cos2(x-$\frac{π}{2}$)-sin2(x-$\frac{π}{2}$)是(  )
A.周期为2π的奇函数B.周期为2π的偶函数
C.周期为π的奇函数D.周期为π的偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求不等式(ax-1)(x+2)<0(-$\frac{1}{2}$<a≤0)的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>1)的右焦点为F(1,0),过点F且不与坐标轴垂直的直线x=my+1交椭圆C于A,B两点,线段AB的垂直平分线与x轴交于点G(t,0).
(Ⅰ)当t=0时,求实数m的值;
(Ⅱ)求证:对于任意的实数m,都不存在直线AB,使得AG⊥BG.

查看答案和解析>>

同步练习册答案