精英家教网 > 高中数学 > 题目详情
12.函数y=cos2(x-$\frac{π}{2}$)-sin2(x-$\frac{π}{2}$)是(  )
A.周期为2π的奇函数B.周期为2π的偶函数
C.周期为π的奇函数D.周期为π的偶函数

分析 由条件利用二倍角公式化简函数的解析式,再根据余弦函数的周期性、奇偶性,得出结论.

解答 解:∵函数y=cos2(x-$\frac{π}{2}$)-sin2(x-$\frac{π}{2}$)=cos2(x-$\frac{π}{2}$)=-cos2x,
故该函数的周期为$\frac{2π}{2}$=π,且是偶函数,
故选:D.

点评 本题主要考查二倍角公式、余弦函数的周期性、奇偶性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知双曲线C:$\frac{{x}^{2}}{3}$-y2=1.
(1)若l:y=kx+m(mk≠0)与C交于不同的两点M,N都在以A(0,-1)为圆心的圆上,求m的取值范围;
(2)若将(1)中的“双曲线C”改为““双曲线C的右支”,其余条件不变,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)对任意x,y∈R,f(x+y)=f(x)+f(y).且当x>0时,f(x)<0,求f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知a+a-1=7,求下列各式的值:
(1)a2+a-2
(2)a-a-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.若|x|=5,|y|=3,且|x-y|=y-x,求(x+y)|x+y|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在钝角△ABC中,若B=2A,则$\frac{b}{a}$的取值范围是(0,$\sqrt{2}$)∪($\frac{\sqrt{3}}{2}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知不等式组$\left\{\begin{array}{l}x+y≤2\\ x-y≥-2\\ y≥1\end{array}\right.$表示的平面区域为A,若M是区域A上一点,N(-4,0),则MN斜率的取值范围是$[\frac{1}{5},\frac{1}{2}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=ln$\frac{x}{1-x}$,若f(a)+f(b)=0,且0<a<b,则ab的取值范围是(0,$\frac{1}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=lnx,g(x)=(2-a)(x-1)-2f(x).
(1)当a=1时,求函数g(x)的单调区间;
(2)设F(x)=f(x)+$\frac{b}{x+1}$(b>0),对任意的x1,x2∈[0,1],x1≠x2,都有$\frac{F({x}_{1})-F({x}_{2})}{{x}_{1}-{x}_{2}}$<-1,求实数b的取值范围;
(3)设A(x1,y1),B(x2,y2)是函数y=f(x)图象上任意不同的两点,线段AB的中点为C(x0,y0),直线AB的斜率为k,证明:k>f′(x0

查看答案和解析>>

同步练习册答案