分析 (1)直线l的参数方程为$\left\{\begin{array}{l}{x=t}\\{y=\frac{\sqrt{2}}{2}+\sqrt{3}t}\end{array}\right.$ (t为参数),消去参数t化为普通方程可得,进而得到倾斜角.由曲线C的极坐标方程得到:ρ2=2ρcos(θ-$\frac{π}{4}$),利用ρ2=x2+y2,即可化为直角坐标方程.
(2)将|PA|+|PB|转化为求|AB|来解答.
解答 解 (1)直线l的参数方程为$\left\{\begin{array}{l}{x=t}\\{y=\frac{\sqrt{2}}{2}+\sqrt{3}t}\end{array}\right.$ (t为参数),消去参数t化为普通方程可得:y=$\sqrt{3}$x+$\frac{\sqrt{2}}{2}$,
则该直线的斜率为:$\sqrt{3}$.
设倾斜角为α,则tanα=$\sqrt{3}$,α∈[0,π).所以α=$\frac{π}{3}$,即:直线l倾斜角为$\frac{π}{3}$;
曲线C的极坐标方程为ρ=2cos(θ-$\frac{π}{4}$),
所以ρ2=2ρcos(θ-$\frac{π}{4}$),
所以曲线C的直角坐标方程为(x-$\frac{\sqrt{2}}{2}$)2+(y-$\frac{\sqrt{2}}{2}$)2=1.
(2)容易判断点P(0,$\frac{\sqrt{2}}{2}$)在直线l上且在圆C内部,所以|PA|+|PB|=|AB|,直线l的直角坐标方程为y=$\sqrt{3}$x+$\frac{\sqrt{2}}{2}$.
所以圆心($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$)到直线l的距离d=$\frac{\sqrt{6}}{4}$.
所以|AB|=$\frac{\sqrt{10}}{2}$,即|PA|+|PB|=$\frac{\sqrt{10}}{2}$.
点评 本题考查了极坐标与直角坐标方程的互化、参数方程化为普通方程、三角函数求值、弦长公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {-1,0,1,2} | B. | {1,2,3} | C. | {1,2} | D. | ∅ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\frac{{1+\sqrt{3}}}{2}$ | C. | 2 | D. | $\sqrt{3}+1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com