精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=cos(2x-$\frac{π}{3}$)+2sin(x-$\frac{π}{4}$)sin(x+$\frac{π}{4}$).
(1)求函数y=f(x)的单调增区间;
(2)设△ABC的内角A,B,C的对边分别为a,b,c,满足c=2$\sqrt{3}$,f(C)=1,且点O满足|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=|$\overrightarrow{OC}$|,求$\overrightarrow{CO}$•($\overrightarrow{CA}$+$\overrightarrow{CB}$)的取值范围.

分析 (1)化简函数f(x)为正弦型函数,求出它的单调增区间即可;
(2)先求出C的值,再根据平面向量的数量积与模长公式,即可求出正确的结果.

解答 解:(1)∵$f(x)=cos(2x-\frac{π}{3})+2sin(x-\frac{π}{4})sin(x+\frac{π}{4})$
=$\frac{1}{2}cos2x+\frac{{\sqrt{3}}}{2}sin2x+(sinx-cosx)(sinx+cosx)$
=$\frac{1}{2}$cos2x+$\frac{\sqrt{3}}{2}$sin2x+sin2x-cos2x
=$\frac{1}{2}$cos2x+$\frac{\sqrt{3}}{2}$sin2x-cos2x
=$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$cos2x
=sin(2x-$\frac{π}{6}$);…(3分)
令-$\frac{π}{2}$+2kπ≤2x-$\frac{π}{6}$≤$\frac{π}{2}$+2kπ,k∈Z,
得-$\frac{π}{6}$+kπ≤x≤$\frac{π}{3}$+kπ,k∈Z;
∴f(x)的单调增区间为$[kπ-\frac{π}{6},kπ+\frac{π}{3}]$,k∈Z;…(5分)
(2)$f(C)=sin(2C-\frac{π}{6})=1$,
∵0<C<π,0<2C<2π,
∴$-\frac{π}{6}<2C-\frac{π}{6}<\frac{11π}{6}$,
∴$2C-\frac{π}{6}=\frac{π}{2}$,
解得$C=\frac{π}{3}$,…(6分)
设CA,CB的中点分别为M,N,
∵O点满足$|\overrightarrow{OA}|=|\overrightarrow{OB}|=|\overrightarrow{OC}|$,∴O为△ABC的外心,
$\overrightarrow{CO}$•($\overrightarrow{CA}$+$\overrightarrow{CB}$)=$\overrightarrow{CO}$•$\overrightarrow{CA}$+$\overrightarrow{CO}$•$\overrightarrow{CB}$
=|$\overrightarrow{CM}$|×|$\overrightarrow{CA}$|+|$\overrightarrow{CN}$|×|$\overrightarrow{CB}$|
=$\frac{1}{2}({a^2}+{b^2})$…(8分)
=$\frac{1}{2}$${(\frac{c}{sinC})}^{2}$(sin2A+sin2B)
=8×$\frac{2-cos2A-cos2B}{2}$
=4(2-2cos(A+B)cos(A-B))
=4(2+cos(A-B))(*),
又C=$\frac{π}{3}$,∴A+B=$\frac{2π}{3}$,
∴A-B=$\frac{2π}{3}$-2B∈(-$\frac{2π}{3}$,$\frac{2π}{3}$);
由(*)得A=B=$\frac{π}{3}$时,得最大值12,
则6<4(2+cos(A-B))≤12,
故$\overrightarrow{CO}$•($\overrightarrow{CA}$+$\overrightarrow{CB}$)的取值范围是[6,12].…(12分)

点评 本题考查了三角函数的化简与运算问题,也考查了平面向量的数量积与模长公式的应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知椭圆C1、抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为原点O,从每条曲线上各取两个点,将其坐标记录于表中:
x3-24$\sqrt{2}$
y-2$\sqrt{3}$0-4$\frac{\sqrt{2}}{2}$
(1)求C1,C2的标准方程;
(2)已知直线l过C2的焦点F并与C1交于不同的两点M,N,且满足$\overrightarrow{OM}$⊥$\overrightarrow{ON}$.求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列命题中为真命题的是(  )
A.命题“若α=β,则tanα=tanβ”的逆否命题为假命题
B.“x>1”是“x2-1>0”的必要不充分条件
C.“m>0>n”是“$\frac{1}{m}$>$\frac{1}{|n|}$”的充分不必要条件
D.命题“?a>1,a2+2a-3<0”的否定是:“?a≤1,a2+2a-3≥0”

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知直线l的参数方程为$\left\{\begin{array}{l}{x=t}\\{y=\frac{\sqrt{2}}{2}+\sqrt{3}t}\end{array}\right.$ (t为参数),若以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,得曲线C的极坐标方程为ρ=2cos(θ-$\frac{π}{4}$).
(1)求直线l的倾斜角和曲线C的直角坐标方程;
(2)若直线l与曲线C交于A,B两点,设点P(0,$\frac{\sqrt{2}}{2}$),求|PA|+|PB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列函数中,是奇函数的是(  )
A.f(x)=x2+1B.f(x)=|x+1|C.f(x)=x3+1D.f(x)=x+$\frac{1}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合M={x|y=$\sqrt{x-1}}$},N={y|y=$\sqrt{x-1}$},则M与N的关系为(  )
A.M=NB.M⊆NC.M?ND.M∩N=∅

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\left\{{\begin{array}{l}{2ax+4,x≥3}\\{\frac{ax+2}{x-2},2<x<3}\end{array}}$在区间(2,+∞)为减函数,则实数a的取值范围(  )
A.a<-1B.-1<a<0C.$-1<a≤-\frac{1}{2}$D.$-1<a≤-\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{1}{2}$x2+(a-3)x+lnx.
(1)若函数f(x)在定义域上是单调增函数,求a的最小值;
(2)若方程f(x)-($\frac{1}{2}$+a)x2-(a-4)x=0在区间[$\frac{1}{e}$,e]上有两个不同的实根,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若$sinx-sin(\frac{3π}{2}-x)=\sqrt{2}$,则$tanx+tan(\frac{3π}{2}-x)$的值是2.

查看答案和解析>>

同步练习册答案