精英家教网 > 高中数学 > 题目详情
13.已知椭圆C1、抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为原点O,从每条曲线上各取两个点,将其坐标记录于表中:
x3-24$\sqrt{2}$
y-2$\sqrt{3}$0-4$\frac{\sqrt{2}}{2}$
(1)求C1,C2的标准方程;
(2)已知直线l过C2的焦点F并与C1交于不同的两点M,N,且满足$\overrightarrow{OM}$⊥$\overrightarrow{ON}$.求直线l的方程.

分析 (1)把抛物线C2:y2=2px(p≠0)变为$\frac{{y}^{2}}{x}$=2p,已知可知(3,-2$\sqrt{3}$),(4,-4)在C2上,求出p,则抛物线方程可求;设椭圆C1:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0),把点(-2,0),($\sqrt{2}$,$\frac{\sqrt{2}}{2}$)代入即可求得a,b的值,则椭圆方程可求;
(2)当直线l的斜率不存在时,不满足题意;当直线l的斜率存在时,设其方程为y=k(x-1),联立直线方程和椭圆方程,利用根与系数的关系求得M,N的横纵坐标的乘积,结合$\overrightarrow{OM}$⊥$\overrightarrow{ON}$求得k值得答案.

解答 解:(1)设抛物线C2:y2=2px(p≠0),则有$\frac{{y}^{2}}{x}$=2p(x≠0),
据此验证四个点知(3,-2$\sqrt{3}$),(4,-4)在C2上,求得C2的标准方程为y2=4x.
设椭圆C1:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0),把点(-2,0),($\sqrt{2}$,$\frac{\sqrt{2}}{2}$)代入得$\left\{\begin{array}{l}{\frac{4}{{a}^{2}}=1}\\{\frac{2}{{a}^{2}}+\frac{1}{2{b}^{2}}=1}\end{array}\right.$,
解得$\left\{\begin{array}{l}{{a}^{2}=4}\\{{b}^{2}=1}\end{array}\right.$,∴C1的标准方程为$\frac{x2}{4}$+y2=1;
(2)当直线l的斜率不存在时,不满足题意;
当直线l的斜率存在时,设其方程为y=k(x-1),
与C1的交点为M(x1,y1),N(x2,y2).
联立$\left\{\begin{array}{l}{y=k(x-1)}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$,消去y并整理得(1+4k2)x2-8k2x+4(k2-1)=0,
于是x1+x2=$\frac{8{k}^{2}}{1+4{k}^{2}}$,x1x2=$\frac{4({k}^{2}-1)}{1+4{k}^{2}}$.①
∴y1y2=k2(x1-1)(x2-1)=k2[x1x2-(x1+x2)+1]=k2[$\frac{4({k}^{2}-1)}{1+4{k}^{2}}$-$\frac{8{k}^{2}}{1+4{k}^{2}}$+1]=-$\frac{3{k}^{2}}{1+4{k}^{2}}$.②
由$\overrightarrow{OM}$⊥$\overrightarrow{ON}$,即$\overrightarrow{OM}$•$\overrightarrow{ON}$=0,得x1x2+y1y2=0.③
将①②代入③式,得$\frac{4({k}^{2}-1)}{1+4{k}^{2}}-\frac{3{k}^{2}}{1+4{k}^{2}}=\frac{{k}^{2}-4}{1+4{k}^{2}}=0$,
解得k=±2,
∴存在直线l满足条件,且直线l的方程为2x-y-2=0或2x+y-2=0.

点评 本题考查椭圆、抛物线的简单性质,考查了直线与圆锥曲线位置关系的应用,体现了“设而不求”的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.以下四个命题中,正确的是(  )
A.命题“若f(x)是周期函数,则f(x)是三角函数”的否命题是“若f(x)是周期函数,则f(x)不是三角函数”
B.命题“?x0∈R,使得不等式x2+1<0成立”的否定是“?x∉R,使得不等式x2+1≥0成立”
C.在△ABC中,“sinA>sinB”是“A>B”的充要条件
D.以上皆不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\left\{\begin{array}{l}-{x}^{2}+1,x<1\\|lo{g}_{\frac{1}{2}}x|,x≥1\end{array}\right.$.
(1)在直角坐标系中画出该函数图象的草图;
(2)根据函数图象的草图,求函数y=f(x)值域,单调区间及零点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=$\frac{ax+1}{{x}^{2}+b}$是偶函数,则a=0,b的取值范围是b∈R.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若圆O2:(x-3)2+(y+3)2=4关于直线l:ax+4y-6=0对称,则直线l的斜率是-$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=$\frac{1}{4}$x2+mx-$\frac{3}{4}$,已知不论α,β为何实数时,恒有f(sinα)≤0且f(2+cosβ)≥0,对于正项数列{an},其前n项和Sn=f(an)(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若$\sqrt{{b}_{n}}$=$\frac{1}{{a}_{n}+1}$,n∈N+,且数列{bn}的前n项和为Tn,试比较Tn与$\frac{1}{6}$的大小并证明之.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x2+bx为偶函数,数列{an}满足an+1=2f(an-1)+1,且a1=5,又设bn=log2(an-1),
(1)求数列{bn}的通项公式;
(2)设cn=nbn,求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数y=$\sqrt{2sinx+1}$的定义域是{x|$-\frac{π}{6}+2kπ≤x≤\frac{7π}{6}+2kπ,k∈Z$}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=cos(2x-$\frac{π}{3}$)+2sin(x-$\frac{π}{4}$)sin(x+$\frac{π}{4}$).
(1)求函数y=f(x)的单调增区间;
(2)设△ABC的内角A,B,C的对边分别为a,b,c,满足c=2$\sqrt{3}$,f(C)=1,且点O满足|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=|$\overrightarrow{OC}$|,求$\overrightarrow{CO}$•($\overrightarrow{CA}$+$\overrightarrow{CB}$)的取值范围.

查看答案和解析>>

同步练习册答案