精英家教网 > 高中数学 > 题目详情
3.以下四个命题中,正确的是(  )
A.命题“若f(x)是周期函数,则f(x)是三角函数”的否命题是“若f(x)是周期函数,则f(x)不是三角函数”
B.命题“?x0∈R,使得不等式x2+1<0成立”的否定是“?x∉R,使得不等式x2+1≥0成立”
C.在△ABC中,“sinA>sinB”是“A>B”的充要条件
D.以上皆不对

分析 写出原命题的否命题,可判断A;写出原命题的否定,可判断B;根据正弦定理和充要条件的定义,可判断C;

解答 解:命题“若f(x)是周期函数,则f(x)是三角函数”的否命题是“若f(x)不是周期函数,则f(x)不是三角函数”,故A错误;
命题“?x0∈R,使得不等式x2+1<0成立”的否定是“?x∈R,使得不等式x2+1≥0成立”,故B错误;
在△ABC中,“sinA>sinB”?“2RsinA>2RsinB”?“a>b”?“A>B”,故“sinA>sinB”是“A>B”的充要条件,故C正确;
故选:C.

点评 本题以命题的真假判断与应用为载体,考查了四种命题,充要条件,特称命题的否定等知识点,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.函数y=2cos(2π-2x)的图象可由函数y=cos2x+$\sqrt{3}$sin2x的图象(  )
A.向左平移$\frac{π}{3}$个单位得到B.向右平移$\frac{π}{3}$个单位得到
C.向左平移$\frac{π}{6}$个单位得到D.向右平移$\frac{π}{6}$个单位得到

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.两条平行线l1:3x+4y-2=0,l2:9x+12y-10=0间的距离等于$\frac{4}{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设平面直角坐标系原点与极坐标极点重合,x轴正半轴与极轴重合,若已知曲线C的极坐标方程为ρ2=$\frac{12}{{3{{cos}^2}θ+{{sin}^2}θ}}$,点F1,F2为其左右焦点,直线l的参数方程为$\left\{\begin{array}{l}x=1+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.(t$为参数,t∈R)
(1)求直线l的普通方程和曲线C的参数方程;
(2)求曲线C上的点到直线l的最大距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.符号[x]表示不超过x的最大整数,如[π]=3,[-1.08]=-2,定义函数f(x)=x-[x].给出下列五个命题:
①函数f(x)的定义域是R,值域为[0,1];       
②方程$f(x)=\frac{1}{2}$有无数个解;
③函数f(x)是周期函数;                      
④函数f(x)是增函数.
⑤函数$F(x)=f(x)+\frac{1}{2}x-1$有3个零点
其中正确命题的序号有②③⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),离心率为$\frac{{\sqrt{3}}}{2}$,P、Q为其上两动点,A为左顶点,且A到上顶点距离$\sqrt{5}$.
(1)求C方程;
(2)若PQ过原点,PA、QA与y轴交于M、N,问$\overrightarrow{AM}•\overrightarrow{AN}$是否为定值;
(3)若PQ过右焦点,问其斜率为多少时,|PQ|等于短轴长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.不等式组$\left\{\begin{array}{l}x+2y-2≥0\\ x-y+1≥0\\ 2x+3y-4≤0\end{array}\right.$表示的平面区域面积为(  )
A.$\frac{1}{5}$B.$\frac{6}{5}$C.$\frac{3}{5}$D.$\frac{3}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在△ABC中,B=45°,c=1.5,b=2,那么sinC=$\frac{3\sqrt{2}}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C1、抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为原点O,从每条曲线上各取两个点,将其坐标记录于表中:
x3-24$\sqrt{2}$
y-2$\sqrt{3}$0-4$\frac{\sqrt{2}}{2}$
(1)求C1,C2的标准方程;
(2)已知直线l过C2的焦点F并与C1交于不同的两点M,N,且满足$\overrightarrow{OM}$⊥$\overrightarrow{ON}$.求直线l的方程.

查看答案和解析>>

同步练习册答案