8£®ÒÑÖªC£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©£¬ÀëÐÄÂÊΪ$\frac{{\sqrt{3}}}{2}$£¬P¡¢QΪÆäÉÏÁ½¶¯µã£¬AΪ×󶥵㣬ÇÒAµ½É϶¥µã¾àÀë$\sqrt{5}$£®
£¨1£©ÇóC·½³Ì£»
£¨2£©ÈôPQ¹ýÔ­µã£¬PA¡¢QAÓëyÖá½»ÓÚM¡¢N£¬ÎÊ$\overrightarrow{AM}•\overrightarrow{AN}$ÊÇ·ñΪ¶¨Öµ£»
£¨3£©ÈôPQ¹ýÓÒ½¹µã£¬ÎÊÆäбÂÊΪ¶àÉÙʱ£¬|PQ|µÈÓÚ¶ÌÖ᳤£®

·ÖÎö £¨1£©ÓÉÌâÒ⣺ÀëÐÄÂÊe=$\frac{{\sqrt{3}}}{2}$£¬AΪ×󶥵㣬¼´A£¨-a£¬0£©£¬ÇÒAµ½É϶¥µã¾àÀë$\sqrt{5}$£¬¿ÉµÃ£ºa2+b2=5£®
¸ù¾ÝÍÖÔ²ÖÐa£¬b£¬cµÄ¹ØÏµ¼´¿ÉÇó³öa£¬bµÄÖµ£®¿ÉµÃC·½³Ì£®
£¨2£©ÓÉÌâÒ⣺P¡¢QΪÆäÉÏÁ½¶¯µã£¬AΪ×󶥵㣬PQ¹ýÔ­µã£¬¸ù¾ÝÍÖÔ²µÄ¶Ô³ÆÐÔ£¬¿ÉÖªP£¬Q×ø±ê¹ØÓÚÔ­µã¶Ô³Æ£®Éè³öPµÄ×ø±ê£¬¿ÉµÃQµÄ×ø±ê£¬Çó³öPA¡¢QAµÄÇó³ö·½³ÌÓëyÖá½»ÓÚM¡¢NµÄ×ø±ê£¬¼´¿ÉµÃ$\overrightarrow{AM}•\overrightarrow{AN}$£®
£¨3£©ÀûÓõãбʽÉè³öPQÖ±Ïß·½³Ì£¬ÀûÓÃÏÒ³¤¹«Ê½Óë¶ÌÖ᳤½¨Á¢µÈʽ¹ØÏµÇó½âkµÄÖµ£®

½â´ð ½â£º£¨1£©ÓÉÌâÒ⣺ÀëÐÄÂÊe=$\frac{c}{a}$=$\frac{{\sqrt{3}}}{2}$£¬AΪ×󶥵㣬¼´A£¨-a£¬0£©£¬ÇÒAµ½É϶¥µã¾àÀë$\sqrt{5}$£¬
¿ÉµÃ£ºa2+b2=5£¬
ÓÖÒòΪa2-b2=c2£®
½âµÃ£ºa=2£¬b=1£¬c=$\sqrt{3}$
ËùÒÔC·½³ÌΪ$\frac{{x}^{2}}{4}+{y}^{2}=1$£®
£¨2£©ÓÉÌâÒ⣺P¡¢QΪÆäÉÏÁ½¶¯µã£¬AΪ×󶥵㣬PQ¹ýÔ­µã£¬ÉèP£¨x1£¬y1£©£¬¸ù¾ÝÍÖÔ²µÄ¶Ô³ÆÐÔ£¬¿ÉÖªQ
£¨-x1£¬-y1£©
Ôò£º${k}_{AP}=\frac{{y}_{1}}{{x}_{1}+2}$£¬${k}_{QA}=\frac{{y}_{1}}{-2+{x}_{1}}$
¿ÉµÃ£ºÖ±ÏßPAµÄ·½³ÌΪ£º$y=\frac{{y}_{1}}{{x}_{1}+2}£¨x+2£©$
Ö±ÏßQAµÄ·½³ÌΪ£º$y=\frac{{-y}_{1}}{{2-x}_{1}}$£¨x+2£©
PA¡¢QAµÄ³ö·½³ÌÓëyÖá½»ÓÚM¡¢NµÄ×ø±ê£¬
Áîx=0£¬½âµÃ£ºM£¨0£¬$\frac{2{y}_{1}}{{x}_{1}+2}$£©£¬N£¨0£¬$\frac{2{y}_{1}}{{x}_{1}-2}$£©£¬
$\overrightarrow{AM}=£¨2£¬\frac{2{y}_{1}}{{x}_{1}+2}£©$£¬$\overrightarrow{AN}$=£¨2£¬$\frac{2{y}_{1}}{{x}_{1}-2}$£©£¬
ÄÇô£º$\overrightarrow{AM}•\overrightarrow{AN}$=4+$\frac{4{{y}_{1}}^{2}}{{{x}_{1}}^{2}-4}$£¬
¡ß${{x}_{1}}^{2}+4{{y}_{1}}^{2}=4$
¡à$\overrightarrow{AM}•\overrightarrow{AN}$=5£¨³£Êý£©
ËùÒÔ$\overrightarrow{AM}•\overrightarrow{AN}$ÊǶ¨Öµ£¬Æä¶¨ÖµÎª5£®
£¨3£©PQ¹ýÓÒ½¹µã£¬ÆäÓÒ½¹µãF£¨$\sqrt{3}$£¬0£©£¬
¡ßk´æÔÚ£¬
¡àÖ±ÏßPQ·½³ÌΪy=k£¨x-$\sqrt{3}$£©£¬¼´$kx-y-k\sqrt{3}=0$
ÁªÁ¢$\left\{\begin{array}{l}{{x}^{2}+4{y}^{2}=4}\\{kx-y-k\sqrt{3}=0}\end{array}\right.$£¬»¯¼òÕûÀí£º$£¨4{k}^{2}+1£©{x}^{2}-8\sqrt{3}{k}^{2}x+12{k}^{2}-4=0$£»
${x}_{1}+{x}_{2}=\frac{8\sqrt{3}{k}^{2}}{4{k}^{2}+1}$£¬${x}_{1}•{x}_{2}=\frac{12{k}^{2}-4}{4{k}^{2}+1}$
¡ßÏÒ³¤|PQ|µÈÓÚ¶ÌÖ᳤£®
¿ÉµÃ£º|PQ|=$\sqrt{1+{k}^{2}}•\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}}$=2
½âµÃk=$¡À\frac{\sqrt{2}}{2}$£®
ËùÒÔµ±PQ¹ýÓÒ½¹µã£¬Ð±ÂÊΪ$¡À\frac{\sqrt{2}}{2}$ʱ£¬|PQ|µÈÓÚ¶ÌÖ᳤£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ¼òµ¥¼¸ºÎÐÔÖÊ£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµµÄÔËÓúͼÆËãÄÜÁ¦£¬×ÛºÏÐÔÇ¿£¬¼ÆËãÁ¿´ó£¬¿¼²éÁËÆ½ÃæÏòÁ¿µÄÊýÁ¿»ýÔËË㣬ÊÇÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÔÚ¡÷ABCÖУ¬ÄÚ½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬ÇÒa£¾c£®ÒÑÖª$\overrightarrow{AB}$•$\overrightarrow{BC}$=-2£¬cosB=$\frac{1}{3}$£¬b=3£®Çó£º
£¨¢ñ£©aºÍcµÄÖµ£»
£¨¢ò£©cos£¨B-C£©µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÒÑÖª¡÷ABCµÄÄÚ½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðΪa£¬b£¬c£¬ÏòÁ¿$\overrightarrow{m}$=£¨2sin B£¬-$\sqrt{3}$£©£¬$\overrightarrow{n}$=£¨cos2B£¬2cos2$\frac{B}{2}$-1£©£¬ÇÒ$\overrightarrow{m}$¡Î$\overrightarrow{n}$¡În£¬ÔòÈñ½ÇBµÄֵΪ£¨¡¡¡¡£©
A£®$\frac{2¦Ð}{3}$B£®$\frac{¦Ð}{4}$C£®$\frac{¦Ð}{2}$D£®$\frac{¦Ð}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®¹ØÓÚÏÂÁÐÃüÌ⣺
¢Ùº¯Êý$y=cos£¨{2x+\frac{¦Ð}{3}}£©$µÄÒ»Ìõ¶Ô³ÆÖáΪֱÏߣº$x=-\frac{¦Ð}{6}$£»
¢Úº¯Êý$y=cos2£¨{\frac{¦Ð}{3}-x}£©$ÊÇżº¯Êý£»
¢Ûº¯Êý$y=4sin£¨{2x-\frac{¦Ð}{3}}£©$µÄÒ»¸ö¶Ô³ÆÖÐÐÄÊÇ$£¨{\frac{¦Ð}{6}£¬0}£©$£»
¢Üº¯Êý$y=sin£¨{x+\frac{¦Ð}{4}}£©$ÔÚ±ÕÇø¼ä$[{-\frac{¦Ð}{2}£¬\frac{¦Ð}{2}}]$ÉÏÊÇÔöº¯Êý
д³öËùÓÐËùÓÐÕýÈ·µÄÃüÌâµÄÐòºÅ£º¢Ù¢Û£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÒÔÏÂËĸöÃüÌâÖУ¬ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®ÃüÌâ¡°Èôf£¨x£©ÊÇÖÜÆÚº¯Êý£¬Ôòf£¨x£©ÊÇÈý½Çº¯Êý¡±µÄ·ñÃüÌâÊÇ¡°Èôf£¨x£©ÊÇÖÜÆÚº¯Êý£¬Ôòf£¨x£©²»ÊÇÈý½Çº¯Êý¡±
B£®ÃüÌâ¡°?x0¡ÊR£¬Ê¹µÃ²»µÈʽx2+1£¼0³ÉÁ¢¡±µÄ·ñ¶¨ÊÇ¡°?x∉R£¬Ê¹µÃ²»µÈʽx2+1¡Ý0³ÉÁ¢¡±
C£®ÔÚ¡÷ABCÖУ¬¡°sinA£¾sinB¡±ÊÇ¡°A£¾B¡±µÄ³äÒªÌõ¼þ
D£®ÒÔÉϽԲ»¶Ô

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Èçͼ£¬ÔÚÕýÈýÀâÖù£¨²àÀâ´¹Ö±ÓÚµ×Ãæ£¬ÇÒµ×ÃæÊÇÕýÈý½ÇÐΣ©ABC-A1B1C1ÖУ¬DÊÇAC±ßµÄÖе㣮
£¨1£©ÇóÖ¤£ºAB1¡ÎÆ½ÃæDBC1£»
£¨2£©µ±CA1¡ÍAB1ʱ£¬ÇóÖ¤£ºCA1¡ÍÆ½ÃæDBC1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Ä³¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬PÊÇÕý·½ÐÎABCD¶Ô½ÇÏߵĽ»µã£¬GÊÇPBµÄÖе㣮
£¨1£©¸ù¾ÝÈýÊÓͼ£¬»­³ö¸Ã¼¸ºÎÌåµÄÖ±¹Ûͼ£¨²»Ð´»­·¨£¬µ«Í¼Ó¦Ðéʵ·ÖÃ÷£¬ÑÕÉ«Îðdz£©£»
£¨2£©¶ÔÓڸü¸ºÎÌ壬ÊÔÇóÁ½ÒìÃæÖ±ÏßAGÓëCDËù³É½ÇµÄ´óС£»
£¨3£©¶ÔÓڸü¸ºÎÌ壬ÊÔÇó$\frac{{V}_{C-GAB}}{{V}_{P-ABCD}}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®½«º¯Êýy=sin£¨¦Øx+¦Õ£©£¨¦Ø£¾0£¬|¦Õ|£¼$\frac{¦Ð}{2}$£©µÄͼÏóÏò×óÆ½ÒÆ$\frac{¦Ð}{12}$¸öµ¥Î»³¤¶Èºó£¬ËùµÃÇúÏßµÄÒ»²¿·ÖÈçͼËùʾ£¬Ôò¦Ø£¬¦ÕµÄÖµ·Ö±ðΪ£¨¡¡¡¡£©
A£®1£¬$\frac{¦Ð}{6}$B£®1£¬$-\frac{¦Ð}{6}$C£®2£¬$\frac{¦Ð}{3}$D£®2£¬$-\frac{¦Ð}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®É躯Êýf£¨x£©=$\frac{1}{4}$x2+mx-$\frac{3}{4}$£¬ÒÑÖª²»ÂÛ¦Á£¬¦ÂΪºÎʵÊýʱ£¬ºãÓÐf£¨sin¦Á£©¡Ü0ÇÒf£¨2+cos¦Â£©¡Ý0£¬¶ÔÓÚÕýÏîÊýÁÐ{an}£¬ÆäǰnÏîºÍSn=f£¨an£©£¨n¡ÊN*£©£®
£¨¢ñ£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©Èô$\sqrt{{b}_{n}}$=$\frac{1}{{a}_{n}+1}$£¬n¡ÊN+£¬ÇÒÊýÁÐ{bn}µÄǰnÏîºÍΪTn£¬ÊԱȽÏTnÓë$\frac{1}{6}$µÄ´óС²¢Ö¤Ã÷Ö®£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸