·ÖÎö £¨1£©ÓÉÌâÒ⣺ÀëÐÄÂÊe=$\frac{{\sqrt{3}}}{2}$£¬AΪ×󶥵㣬¼´A£¨-a£¬0£©£¬ÇÒAµ½É϶¥µã¾àÀë$\sqrt{5}$£¬¿ÉµÃ£ºa2+b2=5£®
¸ù¾ÝÍÖÔ²ÖÐa£¬b£¬cµÄ¹ØÏµ¼´¿ÉÇó³öa£¬bµÄÖµ£®¿ÉµÃC·½³Ì£®
£¨2£©ÓÉÌâÒ⣺P¡¢QΪÆäÉÏÁ½¶¯µã£¬AΪ×󶥵㣬PQ¹ýԵ㣬¸ù¾ÝÍÖÔ²µÄ¶Ô³ÆÐÔ£¬¿ÉÖªP£¬Q×ø±ê¹ØÓÚÔµã¶Ô³Æ£®Éè³öPµÄ×ø±ê£¬¿ÉµÃQµÄ×ø±ê£¬Çó³öPA¡¢QAµÄÇó³ö·½³ÌÓëyÖá½»ÓÚM¡¢NµÄ×ø±ê£¬¼´¿ÉµÃ$\overrightarrow{AM}•\overrightarrow{AN}$£®
£¨3£©ÀûÓõãбʽÉè³öPQÖ±Ïß·½³Ì£¬ÀûÓÃÏÒ³¤¹«Ê½Óë¶ÌÖ᳤½¨Á¢µÈʽ¹ØÏµÇó½âkµÄÖµ£®
½â´ð ½â£º£¨1£©ÓÉÌâÒ⣺ÀëÐÄÂÊe=$\frac{c}{a}$=$\frac{{\sqrt{3}}}{2}$£¬AΪ×󶥵㣬¼´A£¨-a£¬0£©£¬ÇÒAµ½É϶¥µã¾àÀë$\sqrt{5}$£¬
¿ÉµÃ£ºa2+b2=5£¬
ÓÖÒòΪa2-b2=c2£®
½âµÃ£ºa=2£¬b=1£¬c=$\sqrt{3}$
ËùÒÔC·½³ÌΪ$\frac{{x}^{2}}{4}+{y}^{2}=1$£®
£¨2£©ÓÉÌâÒ⣺P¡¢QΪÆäÉÏÁ½¶¯µã£¬AΪ×󶥵㣬PQ¹ýԵ㣬ÉèP£¨x1£¬y1£©£¬¸ù¾ÝÍÖÔ²µÄ¶Ô³ÆÐÔ£¬¿ÉÖªQ
£¨-x1£¬-y1£©
Ôò£º${k}_{AP}=\frac{{y}_{1}}{{x}_{1}+2}$£¬${k}_{QA}=\frac{{y}_{1}}{-2+{x}_{1}}$
¿ÉµÃ£ºÖ±ÏßPAµÄ·½³ÌΪ£º$y=\frac{{y}_{1}}{{x}_{1}+2}£¨x+2£©$
Ö±ÏßQAµÄ·½³ÌΪ£º$y=\frac{{-y}_{1}}{{2-x}_{1}}$£¨x+2£©
PA¡¢QAµÄ³ö·½³ÌÓëyÖá½»ÓÚM¡¢NµÄ×ø±ê£¬
Áîx=0£¬½âµÃ£ºM£¨0£¬$\frac{2{y}_{1}}{{x}_{1}+2}$£©£¬N£¨0£¬$\frac{2{y}_{1}}{{x}_{1}-2}$£©£¬
$\overrightarrow{AM}=£¨2£¬\frac{2{y}_{1}}{{x}_{1}+2}£©$£¬$\overrightarrow{AN}$=£¨2£¬$\frac{2{y}_{1}}{{x}_{1}-2}$£©£¬
ÄÇô£º$\overrightarrow{AM}•\overrightarrow{AN}$=4+$\frac{4{{y}_{1}}^{2}}{{{x}_{1}}^{2}-4}$£¬
¡ß${{x}_{1}}^{2}+4{{y}_{1}}^{2}=4$
¡à$\overrightarrow{AM}•\overrightarrow{AN}$=5£¨³£Êý£©
ËùÒÔ$\overrightarrow{AM}•\overrightarrow{AN}$ÊǶ¨Öµ£¬Æä¶¨ÖµÎª5£®
£¨3£©PQ¹ýÓÒ½¹µã£¬ÆäÓÒ½¹µãF£¨$\sqrt{3}$£¬0£©£¬
¡ßk´æÔÚ£¬
¡àÖ±ÏßPQ·½³ÌΪy=k£¨x-$\sqrt{3}$£©£¬¼´$kx-y-k\sqrt{3}=0$
ÁªÁ¢$\left\{\begin{array}{l}{{x}^{2}+4{y}^{2}=4}\\{kx-y-k\sqrt{3}=0}\end{array}\right.$£¬»¯¼òÕûÀí£º$£¨4{k}^{2}+1£©{x}^{2}-8\sqrt{3}{k}^{2}x+12{k}^{2}-4=0$£»
${x}_{1}+{x}_{2}=\frac{8\sqrt{3}{k}^{2}}{4{k}^{2}+1}$£¬${x}_{1}•{x}_{2}=\frac{12{k}^{2}-4}{4{k}^{2}+1}$
¡ßÏÒ³¤|PQ|µÈÓÚ¶ÌÖ᳤£®
¿ÉµÃ£º|PQ|=$\sqrt{1+{k}^{2}}•\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}}$=2
½âµÃk=$¡À\frac{\sqrt{2}}{2}$£®
ËùÒÔµ±PQ¹ýÓÒ½¹µã£¬Ð±ÂÊΪ$¡À\frac{\sqrt{2}}{2}$ʱ£¬|PQ|µÈÓÚ¶ÌÖ᳤£®
µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ¼òµ¥¼¸ºÎÐÔÖÊ£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµµÄÔËÓúͼÆËãÄÜÁ¦£¬×ÛºÏÐÔÇ¿£¬¼ÆËãÁ¿´ó£¬¿¼²éÁËÆ½ÃæÏòÁ¿µÄÊýÁ¿»ýÔËË㣬ÊÇÄÑÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{2¦Ð}{3}$ | B£® | $\frac{¦Ð}{4}$ | C£® | $\frac{¦Ð}{2}$ | D£® | $\frac{¦Ð}{3}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ÃüÌâ¡°Èôf£¨x£©ÊÇÖÜÆÚº¯Êý£¬Ôòf£¨x£©ÊÇÈý½Çº¯Êý¡±µÄ·ñÃüÌâÊÇ¡°Èôf£¨x£©ÊÇÖÜÆÚº¯Êý£¬Ôòf£¨x£©²»ÊÇÈý½Çº¯Êý¡± | |
| B£® | ÃüÌâ¡°?x0¡ÊR£¬Ê¹µÃ²»µÈʽx2+1£¼0³ÉÁ¢¡±µÄ·ñ¶¨ÊÇ¡°?x∉R£¬Ê¹µÃ²»µÈʽx2+1¡Ý0³ÉÁ¢¡± | |
| C£® | ÔÚ¡÷ABCÖУ¬¡°sinA£¾sinB¡±ÊÇ¡°A£¾B¡±µÄ³äÒªÌõ¼þ | |
| D£® | ÒÔÉϽԲ»¶Ô |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1£¬$\frac{¦Ð}{6}$ | B£® | 1£¬$-\frac{¦Ð}{6}$ | C£® | 2£¬$\frac{¦Ð}{3}$ | D£® | 2£¬$-\frac{¦Ð}{3}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com